Original Article

Treatment-related pulmonary adverse events induced by chemoradiation and Durvalumab affect survival in locally advanced non-small cell lung cancer

Ting Xu a,1, Lirong Wu a,b,1, Saumil Gandhi a, Wang Jing c, Quyhn-Nhu Nguyen a, Aileen Chen a, Joe Y. Chang a, Roza Nurievad, Ajay Sheshadri e, Mehmet Altanf, Percy P. Lee a, Steven H. Lina, Zhongxing Liaoa, Z. Liao

*Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; a Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing; *Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; f Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; a Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; e Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

A R T I C L E I N F O

Article history:
Received 16 May 2022
Received in revised form 27 September 2022
Accepted 3 October 2022
Available online 7 October 2022

Keywords:
Concurrent chemoradiotherapy
Adjuvant immunotherapy
Disease outcome
Pulmonary toxicities
Non-small cell lung cancer

A B S T R A C T

Purpose: We compared treatment-related pulmonary adverse events (TRPAE), progression-free survival (PFS), and overall survival (OS) among locally advanced non-small cell lung cancer (NSCLC) patients who received concurrent chemoradiotherapy (CRT) versus CRT followed by immune check point inhibitor (ICI) immunotherapy (CRTI).

Materials and methods: TRPAE was defined as any pulmonary events as defined in CTCAE v.5 occurring within 12 months after completion of radiotherapy. Outcomes were compared between CRT and CRTI by Cox proportional hazard regression and Kaplan-Meier analyses. We also assessed if TRPAE-induced discontinuation of ICI affected survival.

Results: We analyzed 326 patients treated between July 2010 and November 2019; 195 patients received CRT and 131 received CRTI. The incidences of severe grade ≥ 3 TRPAE were similar between the two groups, however, symptomatic TRPAE was almost doubled in CRTI group (65.7 % CRTI vs 35.9 % CRT, P = 0.001). The rates of 4-year OS and PFS were 54.5 % vs 36.7 % (P = 0.0003) and 43.8 % vs 35.8 % (P = 0.038) in CRT + Durvalumab and CRT group, respectively. Receipt of ICI Durvalumab was associated with better 4-year OS (HR 0.53, 95 % CI 0.36–0.78, P = 0.001) and PFS (HR 0.55, 95 % CI 0.38–0.80, P = 0.002). Patients who discontinued ICI because of TRPAE had worse 4-year OS (P = 0.001) and higher rates of distant metastasis (P = 0.003) than those who completed planned ICI after developing TRPAE.

Conclusion: CRT followed by adjuvant ICI led to improved 4-year OS and PFS consistent with published data. CRTI was associated with higher incidence of grade ≥ 2 TRPAE in both high and low mean lung dose groups without significant difference in grade ≥ 3 TRPAE. Discontinuation of ICI due to TRPAE was associated with poorer OS and distant disease control than completing ICI as planned after developing TRPAE.

© 2022 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 176 (2022) 149–156 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

The use of immune checkpoint inhibitors (ICI) represents a breakthrough in the treatment of locally advanced non-small cell lung cancer (LA-NSCLC). The median overall survival (OS) time for these patients has improved to 47.5 months with standard concurrent chemoradiotherapy (CRT) and adjuvant ICI immunotherapy with Durvalumab [1,2]. Findings from the landmark PACIFIC trial led to Durvalumab being granted approval by the US Food and Drug Administration as consolidation therapy for patients with unresectable stage III NSCLC [3,4]. However, both CRT and adjuvant ICI carry risks of adverse effects on healthy lung tissue. Moreover, in the PACIFIC trial, only patients who did not develop symptomatic pneumonitis, disease progression, unresolved...

Abbreviations: TRPAE, Treatment-related pulmonary adverse events; PFS, Progression-free survival; OS, Overall survival; LA-NSCLC, Locally advanced non-small cell lung cancer; CRT, Chemoradiotherapy; ICI, Immune checkpoint inhibitor; CRTI, Chemoradiotherapy plus consolidation immune checkpoint inhibitor immunotherapy; CTCAE, Common Terminology Criteria for Adverse Events; CT, Computed tomography; PET, Positron emission tomography; GTV, Gross tumor volume; MLD, Mean lung dose.

Corresponding author at: Department of Radiation Oncology, Unit 1422, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston 77030, USA.

E-mail address: z.liao@mdanderson.org (Z. Liao).

1 Ting Xu and Lirong Wu contributed equally to this project.
symptomatic adverse events from CRT were included in the randomization for ICI, which may have excluded up to 55 % of patients who might benefit from ICI immunotherapy [5].

Findings from other prospective studies have also shown increased pulmonary toxicity among patients who receive thoracic RT with concurrent or sequential PD-1/PD-L1 inhibitor, suggesting that these therapies may interact in ways that increase the risk of pulmonary toxicity [6,7]. A meta-analysis published in abstract form showed that receipt of thoracic RT with ICI for NSCLC led to a higher incidence of ICI-related pneumonitis than that without receiving CRT [8]. Clinically, treatment-related pulmonary adverse events (TRPAE) after CRT or other cancer treatment can present in many different forms including cough, dyspnea, pleural effusion, hypoxia, respiratory distress, infection, even though pneumonitis has been most commonly reported. It is important for clinicians to understand the whole spectrum of possible TRPAE after cancer treatment. Several reports (including the PACIFIC trial) have shown that consolidation ICI can improve survival, however, little “real-world” evidence is available on the incidence of TRPAE and their impacts on survival.

In this study, we hypothesized that consolidation ICI and TRPAE affect disease outcomes after CRT. We retrospectively assessed (1) the effects of CRT followed by adjuvant ICI on TRPAE and rates of 4-year OS and disease progression in patients with LA-NSCLC and (2) whether discontinuation of ICI due to TRPAE would affect OS and disease progression.

Materials and methods

Patients

This was a retrospective analysis of outcomes in 361 patients with inoperable LA-NSCLC who were consecutively treated either with concurrent CRT or CRT plus consolidation ICI immunotherapy (CRTI, routinely used after November 2017) at a single institution. Inclusion criteria includes: 1) NSCLC patients with stage II–III or recurrent disease after initial lung surgery; 2) received concurrent CRT ± adjuvant ICI for the first time; 3) radiation total tumor dose ≥ 60 Gy. Exclusion criteria were 1) active or previous autoimmune diseases or infections (n = 15); 2) history of primary immunodeficiency (n = 2); 3) active steroids treatment (n = 3, also have immune diseases). Finally, 326 patients were included in this analysis (Suppl. Fig. S1). Information on patient-, disease-, and treatment-characteristics and outcomes (survival and lung toxicities) were collected under an IRB-approved protocol for retrospective chart review, and informed consent was waived.

Treatment and follow-up

All patients received definitive concurrent CRT. Chemotherapy regimen was mainly platinum-based doublets with taxanes. Radiation was delivered in daily 2-Gy fractions by photon or proton therapy (median dose 66 Gy, range 60–78 Gy). Patients received radiation doses 66 Gy or higher routinely from 2010. After publication of the RTOG0617 [9,10], our radiation prescription has been changed to give GTV 66 Gy, while maintaining 60 Gy/30 fractions for the PTV. In 2016, we also started treating LA-NSCLC patients using protons as our routine practice. The selection of radiation modality was based on dosimetric comparison demonstrating potential benefit of the selected modality, either photon or protons, or if patient was treated on previously completed proton protocol. Patients who are currently enrolled to therapeutic protocols are not included in the current study. Adjuvant ICI immunotherapy usually started at 4–6 weeks after completion of CRT and continued for 1 year. ICI agents include Durvalumab (n = 118, 90.1 %), Pembrolizumab (n = 6, 4.6 %), Atezolizumab (n = 5, 3.9 %), and Nivolumab (n = 2, 1.5 %). The non-Durvalumab ICIs were mostly used before the FDA approval of Durvalumab as standard consolidation ICI treatment after CRT. ICI may be discontinued due to adverse events or disease progression.

Follow-up evaluations after treatment included surveillance chest CTs or PET/CTs performed at 4–8 weeks after RT completion, and then every 3–4 months thereafter for the next 2 years. Findings documented in diagnostic radiology reports were confirmed independently by a board-certified radiation oncologist.

Treatment-related pulmonary adverse events (TRPAE) were diagnosed and graded by two radiation oncologists or pulmonologists according to the CTCAE 5.0 including pneumonia, pneumonitis, fibrosis, pleural effusion, hypoxia, and respiratory distress. Patients who were diagnosed with pneumonia simultaneously with pneumonitis, or when it was difficult to rule out pneumonitis when patients were diagnosed with pneumonia after RT were included as TRPAE events in this analysis. Patients developed severe respiratory distress needing intubation without clear evidence of pneumonitis (e.g. no imaging changes to indicate inflammation in the lung) were categorized as respiratory distress. Similarly, patients developed hypoxia without clear evidence of pneumonitis were categorized as hypoxia.

Statistical analyses

The endpoints of this study were symptomatic (grade ≥ 2) TRPAE, OS, and progression-free survival (PFS). Time to TRPAE was computed from the start of CRT to the date of the first documented lung toxicity. Maximum grade of TRPAE was used for analysis. Patients who did not develop TRPAE were censored at the time of the last follow-up or death within 1 year after CRT. Demographics and clinical characteristics were compared with t test (for continuous variables) or χ² test (for categorical variables) between treatment groups. Endpoints were estimated by Kaplan-Meier method and compared with log-rank test. Cox proportional hazard regression models were applied to identify associated factors, including clinical factors (age, sex, smoking status, clinical disease stage, tumor location and histology, radiation dose, receipt of chemotherapy, and receipt of ICI), lung and tumor dose parameters, and radiation modalities. Risk factors were entered multivariable model if P < 0.1 in univariable analysis or clinically relevant to the endpoint. P < 0.05 was the threshold for statistical significance. Statistical analyses were conducted with SAS version 9.4 (SAS Institute Inc., Cary, NC).

Results

Patients’ characteristics are shown in Table 1. A total of 326 inoperable LA-NSCLC patients treated from July 2010 through November 2019 were included in this study. Among them, 195 (59.8 %) were treated with CRT from 2010 to 2019, and 131 (40.2 %) were treated with CRTI from 2014 to 2019. Pretreatment patient-related variables (age, sex, smoking status, ECOG performance status score) and disease-related variables (disease stage, tumor histology and location, gross tumor volume [GTV]) were well balanced between the two groups except more white ethnic in CRT group (92.3 % vs 82.4 %).

As for treatment characteristics, majority of patients received standard radiation dose of 60–66 Gy (64.4 %) with photon therapy (75.8 %). A small portion of patients received > 66 Gy (35.6 %) and treated with proton therapy (24.2 %) when dosimetric plan comparison suggested better sparing or neighboring normal organs such as lung, heart, and esophagus. More patients in CRTI group received standard radiation dose compared to CRT group (83.2 % vs 51.8 %, P < 0.0001). However, the mean lung dose (MLD) was
similar between the two groups (CRTI vs CRT, 14.3 Gy vs 15.1 Gy, P = 0.084). Seventeen percent of total patients received induction chemotherapy. No significant difference was found in induction chemotherapy between the two groups. There were 57 (29.2 %) patients in CRTI group received adjuvant chemotherapy. All patients in CRTI group received ICI in an adjuvant setting except for 3 (2.3 %) patients who received consolidation immunotherapy with chemotherapy.

The grades and incidences of TRPAE are listed in Table 2. The incidence of grade ≥ 2 TRPAE was nearly doubled in CRTI group compared to CRT group (65.7 % vs 35.9 %, P < 0.0001). However, there was no significant difference in grade ≥ 3 TRPAE between the CRT and CRTI groups (26.2 % vs 32.1 %, P = 0.247). The median time to grade ≥ 2 TRPAE was 5.1 months (IQR 2.8–7.7) after the start of CRT in the entire population; 5.8 months (IQR 3.5–8.2) for the CRTI group; and 4.3 months (IQR 2.1–6.7) for the CRT group (P = 0.019). In the CRTI group, 85.7 % TRPAE occurred ≤ 8 months and 14.3 % occurred > 8 months after RT. However, more patients in the CRTI group developed TRPAE > 8 months after RT (72.1 % ≤8 months and 27.9 % >8 months, P = 0.040). The incidences of pneumonitis were 62.9 %, 52.3 %, and 78.6 % for the whole, the CRT, and the CRTI groups, respectively.

The cumulative incidences of grade ≥ 2 TRPAE are plotted in Fig. 1A. Curves for patients with and without ICI started to diverge at about 5 months after CRT. Because MLD is an established radiation dosimetric risk factor for TRPAE after CRT for NSCLC [11], we also considered possible interactions between ICI and MLD in this study. We used the mean MLD value of the entire study population (14.8 Gy) as the cutoff to define high and low MLD subgroups. The incidences of grade ≥ 2 TRPAE were 51.1 % in high MLD group and 43.9 % in low MLD group with marginally significant difference (P = 0.062, Fig. 1B). However, MLD was a strong predictor of TRPAE for CRTI patients only (high vs low MLD, 43.9 % vs 24.7 %, P = 0.017, Fig. 1C) but not for CRTI patients. In another word, reduced MLD did not lower the incidences of TRPAE in CRTI group (high vs low MLD, 43.9 % vs 24.7 %, P = 0.017, Fig. 1C) but suggested that ICI induced TRPAE may have a different mechanism independent of radiation induced lung injury.

Univariable Cox regression analysis (Suppl. Table S1) showed that CRTI (Durvalumab) doubled the risk of grade ≥ 2 TRPAE compared to CRT (hazard ratio [HR] = 2.00, 95 % confidence interval [CI] 1.45–2.75, P < 0.0001). Number of ICI cycles was also a strong risk factor for grade ≥ 2 TRPAE (HR = 2.37, 95 % CI 1.56–3.40, P < 0.0001) after adjusting for age, race, CRT, tumor location, ECOG score, smoking status, MLD, total tumor dose and radiation technique. Race, CRT, and radiation technique were significant risk factors for grade ≥ 2 TRPAE after adjustment.
The median times of PFS were 12.4 and 16.7 months for CRT and CRTI group respectively. The median time of OS was 31.0 months for CRT group, while it was not reached but longer than 48 months for CRTI group. Kaplan-Meier estimates for the disease outcomes, including PFS, local–regional progression–free survival (LPFS), distant metastasis–free survival (DMFS), and OS at 4 years by treatment groups are shown in Fig. 2. All rates of 4-year survival outcomes excluding DMFS were significantly higher in the CRT + Durvalumab group than those of the CRT group: PFS, 43.8 % CRTI and 35.8 % CRT ($P = 0.038$); LPFS, 73.1 % CRTI and 59.7 % CRT ($P = 0.016$); DMFS, 52.1 % CRTI and 45.4 % CRT ($P = 0.102$); and OS, 54.5 % CRTI and 36.7 % CRT ($P = 0.0003$). How-

Table 2
Summary of treatment-related pulmonary adverse events.

<table>
<thead>
<tr>
<th>TRPAE CTCAE v5.0 Severity</th>
<th>CRTI Group (n = 131)</th>
<th>CRT Group (n = 195)</th>
<th>All Patients (n = 326)</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>12 (9.2 %)</td>
<td>42 (21.5 %)</td>
<td>54 (16.6 %)</td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>33 (25.2 %)</td>
<td>83 (42.6 %)</td>
<td>116 (35.6 %)</td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>44 (33.6 %)</td>
<td>19 (9.7 %)</td>
<td>63 (19.3 %)</td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>34 (26.0 %)</td>
<td>49 (25.1 %)</td>
<td>83 (25.5 %)</td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td>5 (3.8 %)</td>
<td>1 (0.5 %)</td>
<td>6 (1.8 %)</td>
<td></td>
</tr>
<tr>
<td>Grade 5</td>
<td>3 (2.3 %)</td>
<td>1 (0.5 %)</td>
<td>4 (1.2 %)</td>
<td></td>
</tr>
<tr>
<td>Grade 2+</td>
<td>86 (65.7 %)</td>
<td>70 (35.9 %)</td>
<td>156 (47.9 %)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Grade 3+</td>
<td>42 (32.1 %)</td>
<td>51 (26.2 %)</td>
<td>93 (28.5 %)</td>
<td>0.247</td>
</tr>
</tbody>
</table>

Abbreviations: TRPAE, treatment-related pulmonary adverse events; CTCAE, Common Terminology Criteria for Adverse Events; CRT, chemoradiotherapy; CRTI, chemoradiotherapy plus consolidation immune checkpoint inhibitor immunotherapy.

Fig. 1. Cumulative incidence of grade ≥ 2 treatment-related pulmonary adverse events (TRPAE) in all patients stratified by (A) treatment (CRT vs CRTI), (B) mean lung dose (MLD), and (C) a combination of the two. Significant increases in the incidence of grade ≥ 2 TRPAE were associated with receipt of immune checkpoint inhibitors (ICIs) (A) and in patients with a high (≥14.8 Gy) MLD (B). Receipt of ICI was associated with significantly higher incidence of grade ≥ 2 TRPAE regardless of the MLD. MLD was a strong predictor of grade ≥ 2 TRPAE among patients who received CRT, but not among patients given CRTI (C), because all patients given ICI had a high incidence of TRPAE regardless of whether the MLD was high or low.
Multivariable Cox proportional hazard regression models for treatment-related pulmonary adverse events (TRPAE) and disease outcomes.

In multivariable Cox regression analysis (Table 3), receipt of Durvalumab as consolidation ICI was associated with significantly improved 4-year OS (ICI discontinuation vs continued; HR = 0.53, 95% CI 0.38–0.80, \(P = 0.002 \)) after adjustment for selected clinical factors. GTV, ECOG score, smoking status, and MLD were clinical factors significantly associated with 4-year OS after adjustment. Age, GTV, tumor location and MLD were clinical factors significantly associated with 4-year PFS after adjustment (Table 3).

Finally, we conducted a subgroup analysis to evaluate the effects of TRPAE-caused discontinuation of ICI on disease outcomes. Of the 131 patients in the CTRI group, 55 (42.0 %) completed 1 year adjuvant ICI (50 [38.2 %] patients with TRPAE and 5 [3.8 %] without TRPAE); 72 patients (55.0 %) discontinued ICI; 2 patients (1.5 %) lost follow up. There were a variety of reasons for discontinuation of ICI, chief among them being toxicity events (32 events (24.4 %); 27 TRPAE [20.6 %]; 1 skin toxicity [0.8 %]; 2 arthritis or joint/muscle pain [1.5 %]; 1 cognitive issues and fatigue [0.8 %]; and 1 vomiting and weakness [0.8 %]). The second reason was disease progression (25 patients [19.1 %]). Ten patients (7.6 %) discontinued ICI for other reasons, such as death, change in health status and patient’s decision. Among patients developed TRPAE, 50 (38.2 %) completed ICI therapy and 27 (20.6 %) discontinued ICI therapy because of TRPAE. Discontinuation of ICI had significant negative effects on 4-year DMFS (ICI discontinued vs continued; HR = 0.70, 95% CI 0.51–0.91, \(P = 0.0005 \)) and no significant differences in the rates of PFS, LRFS, or DMFS. Twelve patients (92.3 %) in this ICI subgroup had continued ICI after developing TRPAE (Fig. 3).

Table 3

<table>
<thead>
<tr>
<th>Variables</th>
<th>4-year OS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95 % CI</td>
<td>(P)</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT + Durvalumab</td>
<td>0.53</td>
<td>0.36–0.78</td>
<td>0.001</td>
</tr>
<tr>
<td>CRT + Other ICI</td>
<td>0.61</td>
<td>0.25–1.53</td>
<td>0.293</td>
</tr>
<tr>
<td>Age, years</td>
<td>1.00</td>
<td>0.98–1.02</td>
<td>0.918</td>
</tr>
<tr>
<td>[\geq 67 \text{ vs } \leq 67]</td>
<td>0.78</td>
<td>0.55–1.10</td>
<td>0.161</td>
</tr>
<tr>
<td>Sex (Female vs Male)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race (White vs Others)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0.85</td>
<td>0.48–1.49</td>
<td>0.561</td>
</tr>
<tr>
<td>IIIA</td>
<td>0.81</td>
<td>0.56–1.16</td>
<td>0.249</td>
</tr>
<tr>
<td>IIIB</td>
<td>2.29</td>
<td>0.53–9.95</td>
<td>0.268</td>
</tr>
<tr>
<td>Tumor Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>1.03</td>
<td>0.72–1.49</td>
<td>0.78</td>
</tr>
<tr>
<td>Others</td>
<td>1.13</td>
<td>0.59–2.14</td>
<td>0.64</td>
</tr>
<tr>
<td>GTV, cm(^3)</td>
<td>1.00</td>
<td>1–1.004</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tumor Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>1.16</td>
<td>0.83–1.62</td>
<td>0.397</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>1.11</td>
<td>0.14–8.59</td>
<td>0.920</td>
</tr>
<tr>
<td>Both sides</td>
<td>1.63</td>
<td>0.56–4.79</td>
<td>1.38</td>
</tr>
<tr>
<td>ECOG ([1 \text{ vs } \leq 1])</td>
<td>3.54</td>
<td>1.38–9.09</td>
<td>2.08</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>0.25</td>
<td>0.12–0.56</td>
<td>0.96</td>
</tr>
<tr>
<td>Previous</td>
<td>0.76</td>
<td>0.51–1.12</td>
<td>1.06</td>
</tr>
<tr>
<td>MLD, Gy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>1.06</td>
<td>1.01–1.11</td>
<td>1.05</td>
</tr>
<tr>
<td>Total dose ([>66 \text{ Gy} \text{ vs } \leq 66 \text{ Gy}])</td>
<td>1.12</td>
<td>0.77–1.63</td>
<td>1.30</td>
</tr>
<tr>
<td>Technique (Proton vs Proton)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: TRPAE, treatment-related pulmonary adverse events; OS, overall survival; PFS, progression-free survival; CRT, chemoradiotherapy; CTRI, chemoradiotherapy with consolidation immune checkpoint inhibitor immunotherapy; GTV, gross tumor volume; ECOG, Eastern Cooperative Oncology [performance status] score; MLD, mean lung dose.

Note: Clinical covariates were entered into multivariable models if \(P < 0.1 \) in univariable analysis or relevant to endpoint.
In this real-world, single-institution analysis, receipt of consolidation ICI immunotherapy after CRT significantly increased the incidence of symptomatic (grade 2) TRPAE. Patients who received CRTI had more TRPAE despite receiving lower radiation dose when compared with CRT group. MLD was a strong predictor of TRPAE risk for patients who received CRT, but not for patients who received CRTI. The risk of TRPAE in CRTI treated patients was uniformly high in both high and low MLD subgroups, which implies that ICI immunotherapy was indeed an independent risk factor for TRPAE. We also showed that receipt of Durvalumab ICI immunotherapy led to significantly improved 4-year OS and PFS compared with CRT only. We further found that among the CRTI group, discontinuation of ICI immunotherapy because of TRPAE had significant negative effects on 4-year DMFS and OS.

Clinical data from prospective trials suggested that thoracic RT could increase pulmonary toxicities of ICI, given concurrently or sequentially, for NSCLC [6,7]. In the PACIFIC trial, the incidence of pneumonitis/pneumonia among patients receiving Durvalumab was 46.1 % (any grade) and 7.8 % (grade 3/4) compared with 31.2 % (any grade) and 6.0 % (grade 3/4) among patients given pla-

Discussion

In this real-world, single-institution analysis, receipt of consolidation ICI immunotherapy after CRT significantly increased the incidence of symptomatic (grade 2) TRPAE. Patients who received CRTI had more TRPAE despite receiving lower radiation dose when compared with CRT group. MLD was a strong predictor of TRPAE risk for patients who received CRT, but not for patients who received CRTI. The risk of TRPAE in CRTI treated patients was uniformly high in both high and low MLD subgroups, which implies that ICI immunotherapy was indeed an independent risk factor for TRPAE. We also showed that receipt of Durvalumab ICI immunotherapy led to significantly improved 4-year OS and PFS compared with CRT only. We further found that among the CRTI group, discontinuation of ICI immunotherapy because of TRPAE had significant negative effects on 4-year DMFS and OS.

Clinical data from prospective trials suggested that thoracic RT could increase pulmonary toxicities of ICI, given concurrently or sequentially, for NSCLC [6,7]. In the PACIFIC trial, the incidence of pneumonitis/pneumonia among patients receiving Durvalumab was 46.1 % (any grade) and 7.8 % (grade 3/4) compared with 31.2 % (any grade) and 6.0 % (grade 3/4) among patients given pla-

Fig. 2. Four-year disease outcomes stratified by receipt of chemoradiotherapy (CRT) or chemoradiotherapy followed by adjuvant immune checkpoint inhibitor Durvalumab or other ICI immunotherapy (CRTI). (A) Progression-free survival (PFS); (B) local-regional progression-free survival (LPFS); (C) distant metastasis-free survival (DMFS); and (D) overall survival for patients with non-small cell lung cancer. Receipt of Durvalumab ICI immunotherapy led to improved local and distant progression-free survival and overall survival.

Fig. 3. Four-year disease outcomes in patients with non-small cell lung cancer who developed treatment-related pulmonary adverse events (TRPAE), grouped by completion of immunotherapy. Patients who discontinued immunotherapy had worse (A) distant metastasis-free survival and (B) overall survival than did those who continued ICI therapy after developing TRPAE.
In real-world retrospective studies, there is inconsistency in the reported incidence of pneumonitis [5,6,12–23] (Suppl. Table S2). For examples, Hassanazadeh et al. [21] reported 2/34 (6 %) grade 3 pneumonitis; Bruni et al. [23] reported 7/155 (5 %) grade ≥ 3 pneumonitis; Perna et al. [16] reported 7/187 (4 %) grade 3 pneumonitis, consistent with that reported from PACIFIC trial. However, there are studies reported high rates of grade ≥ 3 pneumonitis [5,12,13,15,17,18,24]. For examples, Jung et al. [5] reported 9/21 (43 %) grade ≥ 2 and 3/21 (14.3 %) grade 3 pneumonitis versus 8/40 (20 %) grade ≥ 2 and 1/40 (2.5 %) grade 3 pneumonitis in Durvalumab versus observation group. Thomas et al. [13] reported 26/123 (21 %) grade ≥ 2 and 17/123 (13 %) grade 3 pneumonitis in CRTI in patients. Mayahara et al. [18] reported 50/56 (89 %) grade ≥ 2 and 22/56 (39 %) grade ≥ 3 pneumonitis. Similarly, the incidences of pneumonitis grades 2 and 3 in our study were largely increased in CRTI group as listed in Suppl. Table S2. There were 76/131 (58 %) grade ≥ 2 and 33/131 (25 %) grade ≥ 3 pneumonitis versus 44/195 (23 %) grade ≥ 2 and 33/195 (14 %) grade ≥ 3 pneumonitis in CRTI versus CRT group. These differences in the incidences of pneumonitis between the real-world reports including our study and PACIFIC trial could reflect the use of strict patient selection criteria and the exclusion of patients who developed symptomatic pneumonitis in the PACIFIC trial. Small sample size and different inclusion criteria of real-world retrospective studies were also potential reasons for the wide range of reported incidences.

In our study, we found 65.7 % grade ≥ 2 TRPAE and 32.1 % grade ≥ 3 TRPAE in CRTI treated patients. This high incidence of TRPAE was due to the inclusion of all possible pulmonary adverse events that were attributable to CRT or CRI in the definition of events in the current study. These pulmonary adverse events included not only pneumonitis but also fibrosis, pleural effusion, hypoxia, respiratory distress, and pneumonia. In a study reported by Reibnitz et al. [12], there were 34/79 (43 %) grade 2 + and 15/79 (19 %) grade 3 + TRPAE in NSCLC patients received CRTI, including pneumonitis, pneumonia, dyspnea, cough, pleural effusion, pulmonary embolism, and bronchopulmonary aspergillosis. Our motivation to include all pulmonary adverse events in this report was to provide a more comprehensive description of all possible pulmonary adverse events that can impact on patient quality of life and even the treatment outcomes. Therefore, incidences of TRPAEs from the current study should not be considered as equivalent to “radiation induced pneumonitis” and should not be directly compared with those reports that only included pneumonitis. In fact, the incidence of grade 3 or higher pneumonitis in our study after CRT or CRI were quite consistent with our previous reports [25–27] and reports from others listed in Suppl. Table S2 [5,12,18].

Use of the PD-L1 inhibitor Durvalumab as consolidation therapy after concurrent CRT has significantly extended survival times and now represents the current standard of care for unresected stage III NSCLC [28]. In Jung et al.’s analysis [5], use of Durvalumab for consolidation was associated with favorable PFS in the entire population as well as a subgroup of patients who did not meet the criteria for the PACIFIC study. Similarly, Desilets et al. [22] reported an improved median OS time for patients given Durvalumab for historical patients. Our findings of improved OS with median > 48 months (vs. 31 months) and improved PFS with median of 16.7 months (vs. 12.4 months) in the CRTI group seems to agree with the results of both the PACIFIC trial and the reported real-world evidence.

Discontinuation of cancer therapy could be expected to negatively affect survival outcomes. In the PACIFIC trial, 15.4 % patients in Durvalumab group and 9.8 % in placebo group discontinued the trial regimen because of grade 3/4 adverse events [3]. Pneumonitis was the most common adverse events for ICI discontinuation. In our study, 24.4 % patients discontinued ICI immunotherapy because of adverse events (mainly grade 3/4 TRPAE), 18 % were discontinued because of pneumonitis, which is consistent with previous reports listed in Suppl. Table S2 [5,6,13–15,17,18,21,22]. These patients had poorer OS and DMFS relative to those who completed ICI even after developing TRPAE. These findings underscore the importance of identifying risk factors, means of early diagnosis, and effective management for TRPAE to allow more patients to complete ICI therapy and, potentially, experience survival and disease control benefits.

We identified MLD was only a risk factor for TRPAE in CRT group but not CRI group. The radiation dose to certain threshold volumes of the lung has been well established as a risk factor for radiation-induced TRPAE [11]. However, using stricter lung-dose constraints may not be as effective in reducing pneumonitis in the setting of CRI as it has been in the setting of CRT, because lung injury induced by ICI may involve different pathophysiological pathways. The precise means by which immunotherapy leads to adverse events is largely unknown, some have proposed that it relates to the temporal process of how immune checkpoints maintain immunologic homeostasis; the point at which PD1 inhibits T cells in peripheral tissues, for example, is thought to be related to the type of tissue injury induced by ICI with anti-PD1 [29]. Recent study also suggested that Th17 mediated inflammation may play a critical role in the pathophysiology of ICI-related pulmonary complications [30]. Additional preclinical and translational research is needed to better understand the mechanisms underlying various types of immunotherapy-related toxicities to develop more specific interventions for TRPAE induced by ICI immunotherapy.

We acknowledged that this retrospective single-center study was subject to all the limitations inherent in retrospective analyses. For example, patients in the CRT group were treated from 2010, and all patients in the CRTI group were treated more recently because of the practice changes resulting from the PACIFIC trial findings. However, the standard work-up and concurrent CRT regimens for LA-NSCLC have been quite consistent for the past 2 decades, and the CRTI group had similar preclinical characteristics to those treated earlier. We also included patients who were diagnosed with pneumonia but also had findings that indistinguishable from TRPAE because of the difficulty in ruling out pneumonitis from pneumonia based on clinical symptoms or diagnostic images, and because these two events often co-exist. We realize that this approach, though more conservative and safer, may add noise to the analysis and contribute to the higher incidence of the TRPAE in our study. Since it is extremely challenging to differentiate pneumonitis and pneumonia clinically, it might be warranted to perform bronchial airway lavage in all cases of pneumonitis to exclude pneumonia, and to develop tests that “diagnose” pneumonitis and distinguish from pneumonia. Furthermore, as additional patients are treated with this new standard of care, our findings will need to be confirmed by larger, prospective multicenter studies.

In conclusion, we found that concurrent CRT followed by consolidation immunotherapy with ICI led to improved survival and disease control relative to concurrent CRT only for patients with LA-NSCLC, consistent with published data. Compared with CRT, CRTI was associated with increased grade 2 TRPAE without significant increase in severe grade ≥ 3 TRPAE regardless of radiation MLD. Discontinuation of ICI resulting from TRPAE was associated with poorer disease outcomes.

Funding

Funded in part by Cancer Center Support (Core) Grant P30 CA016672 from The National Cancer Institute, National Institutes
of Health, United States, to The University of Texas MD Anderson Cancer Center (PI PW Pisters); R01HL157273 from National Institutes of Health, United States (PI ZX Liao); and a donor fund to Radiation for Lung Cancer Research program (PI ZX Liao).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported in part by grants from National Institutes of Health (P30 CA016672 and R01HL157273) and a donor fund. We are very grateful to Christine F. Wogan for the editorial assistance with the manuscript.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.radonc.2022.10.002.

References

