Advertisement

Simulated computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of locally advanced pancreatic cancer

  • Author Footnotes
    † Joshua P Schiff and Alex T Price should be noted as co-first authors.
    Joshua P. Schiff
    Correspondence
    Corresponding author at: Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA (J.P. Schiff). Department of Radiation Oncology, Washington University School of Medicine 4921 Parkview Place, Campus, Box 8224, St. Louis, MO 63110, USA (L.E. Henke).
    Footnotes
    † Joshua P Schiff and Alex T Price should be noted as co-first authors.
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Author Footnotes
    † Joshua P Schiff and Alex T Price should be noted as co-first authors.
    Alex T. Price
    Footnotes
    † Joshua P Schiff and Alex T Price should be noted as co-first authors.
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Hayley B. Stowe
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Eric Laugeman
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Re-I Chin
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Casey Hatscher
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Eleanor Pryser
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Bin Cai
    Affiliations
    Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390, USA
    Search for articles by this author
  • Geoffrey D. Hugo
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Hyun Kim
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Shahed N. Badiyan
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Clifford G. Robinson
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Lauren E. Henke
    Correspondence
    Corresponding author at: Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA (J.P. Schiff). Department of Radiation Oncology, Washington University School of Medicine 4921 Parkview Place, Campus, Box 8224, St. Louis, MO 63110, USA (L.E. Henke).
    Affiliations
    Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA
    Search for articles by this author
  • Author Footnotes
    † Joshua P Schiff and Alex T Price should be noted as co-first authors.
Published:September 02, 2022DOI:https://doi.org/10.1016/j.radonc.2022.08.026

      Highlights

      • CT-STAR met all constraints in 98% of fractions.
      • Simulated treatment with non-adapted plans would have yielded 94 OAR violations.
      • 100% of non-adapted plans generated had ≥1 OAR hard constraint violation.
      • Median time per fraction was 36.28 minutes (27.57–55.86).
      • CT-STAR is a feasible modality for ablating locally advanced pancreatic cancer.

      Abstract

      Background and purpose

      We conducted a prospective, in silico imaging clinical trial to evaluate the feasibility and potential dosimetric benefits of computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of locally advanced pancreatic cancer (LAPC).

      Materials and methods

      Eight patients with LAPC received five additional CBCTs on the ETHOS system before or after their standard of care radiotherapy treatment. Initial plans were created based on their initial simulation anatomy (PI) and emulated adaptive plans were created based on their anatomy-of-the-day (PA). The prescription was 50 Gy/5 fractions. Plans were created under a strict isotoxicity approach, in which organ-at-risk (OAR) constraints were prioritized over planning target volume coverage. The PI was evaluated on the patient’s anatomy-of-the-day, compared to the daily PA, and the superior plan was selected. Feasibility was defined as successful completion of the workflow in compliance with strict OAR constraints in ≥80% of fractions.

      Results

      CT-STAR was feasible in silico for LAPC and improved OAR and/or target dosimetry in 100% of fractions. Use of the PI based on the patient’s anatomy-of-the-day would have yielded a total of 94 OAR constraint violations and ≥1 hard constraint violation in 40/40 fractions. In contrast, 39/40 PA met all OAR constraints. In one fraction, the PA minimally exceeded the large bowel constraint, although dosimetrically improved compared to the PI. Total workflow time per fraction was 36.28 minutes (27.57–55.86).

      Conclusion

      CT-STAR for the treatment of LAPC cancer proved feasible and was dosimetrically superior to non-adapted CT-stereotactic body radiotherapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jaffray D.
        • Kupelian P.
        • Djemil T.
        • Macklis R.M.
        Review of image-guided radiation therapy.
        Expert Rev Anticancer Ther. 2007; 7: 89-103https://doi.org/10.1586/14737140.7.1.89
        • Kupelian P.A.
        • Willoughby T.R.
        • Reddy C.A.
        • Klein E.A.
        • Mahadevan A.
        Impact of image guidance on outcomes after external beam radiotherapy for localized prostate cancer.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1146-1150https://doi.org/10.1016/j.ijrobp.2007.08.003
        • Raziee H.
        • Moraes F.Y.
        • Murgic J.
        • Chua M.L.K.
        • Pintilie M.
        • Chung P.
        • et al.
        Improved outcomes with dose escalation in localized prostate cancer treated with precision image-guided radiotherapy.
        Radiother Oncol. 2017; 123: 459-465https://doi.org/10.1016/j.radonc.2017.04.003
        • Westerveld H.
        • Nesvacil N.
        • Fokdal L.
        • Chargari C.
        • Schmid M.P.
        • Milosevic M.
        • et al.
        Definitive radiotherapy with image-guided adaptive brachytherapy for primary vaginal cancer.
        Lancet Oncol. 2020; 21: e157-e167https://doi.org/10.1016/S1470-2045(19)30855-1
        • Wang D.
        • Zhang Q.
        • Eisenberg B.L.
        • Kane J.M.
        • Li X.A.
        • Lucas D.
        • et al.
        Significant reduction of late toxicities in patients with extremity sarcoma treated with image-guided radiation therapy to a reduced target volume: results of Radiation Therapy Oncology Group RTOG-0630 Trial.
        J Clin Oncol. 2015; 33: 2231-2238https://doi.org/10.1200/JCO.2014.58.5828
        • Ball D.
        • Mai G.T.
        • Vinod S.
        • Babington S.
        • Ruben J.
        • Kron T.
        • et al.
        Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial.
        Lancet Oncol. 2019; 20: 494-503https://doi.org/10.1016/S1470-2045(18)30896-9
        • Onishi H.
        • Shirato H.
        • Nagata Y.
        • Hiraoka M.
        • Fujino M.
        • Gomi K.
        • et al.
        Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study.
        J Thorac Oncol. 2007; 2: S94-S100https://doi.org/10.1097/JTO.0b013e318074de34
        • Salama J.K.
        • Hasselle M.D.
        • Chmura S.J.
        • Malik R.
        • Mehta N.
        • Yenice K.M.
        • et al.
        Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease.
        Cancer. 2012; 118: 2962-2970https://doi.org/10.1002/cncr.26611
        • Hammel P.
        • Huguet F.
        • van Laethem J.-L.
        • Goldstein D.
        • Glimelius B.
        • Artru P.
        • et al.
        Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial.
        JAMA. 2016; 315: 1844-1853https://doi.org/10.1001/jama.2016.4324
        • Krishnan S.
        • Chadha A.S.
        • Suh Y.
        • Chen H.-C.
        • Rao A.
        • Das P.
        • et al.
        Focal radiation therapy dose escalation improves overall survival in locally advanced pancreatic cancer patients receiving induction chemotherapy and consolidative chemoradiation.
        Int J Radiat Oncol Biol Phys. 2016; 94: 755-765https://doi.org/10.1016/j.ijrobp.2015.12.003
        • Koay E.J.
        • Hanania A.N.
        • Hall W.A.
        • Taniguchi C.M.
        • Rebueno N.
        • Myrehaug S.
        • et al.
        Dose-escalated radiation therapy for pancreatic cancer: a simultaneous integrated boost approach.
        Pract Radiat Oncol. 2020; 10: e495-e507https://doi.org/10.1016/j.prro.2020.01.012
        • Reyngold M.
        • Parikh P.
        • Crane C.H.
        Ablative radiation therapy for locally advanced pancreatic cancer: techniques and results.
        Radiat Oncol. 2019; 14: 95https://doi.org/10.1186/s13014-019-1309-x
        • Chang D.T.
        • Schellenberg D.
        • Shen J.
        • Kim J.
        • Goodman K.A.
        • Fisher G.A.
        • et al.
        Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas.
        Cancer. 2009; 115: 665-672https://doi.org/10.1002/cncr.24059
        • Hoyer M.
        • Roed H.
        • Sengelov L.
        • Traberg A.
        • Ohlhuis L.
        • Pedersen J.
        • et al.
        Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma.
        Radiother Oncol. 2005; 76: 48-53https://doi.org/10.1016/j.radonc.2004.12.022
        • Henke L.
        • Kashani R.
        • Yang D.
        • Zhao T.
        • Green O.
        • Olsen L.
        • et al.
        Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages.
        Int J Radiat Oncol Biol Phys. 2016; 96: 1078-1086https://doi.org/10.1016/j.ijrobp.2016.08.036
        • Liu L.
        • Johansson A.
        • Cao Y.
        • Kashani R.
        • Lawrence T.S.
        • Balter J.M.
        Modeling intra-fractional abdominal configuration changes using breathing motion-corrected radial MRI.
        Phys Med Biol. 2021; 66https://doi.org/10.1088/1361-6560/abef42
        • Hassanzadeh C.
        • Rudra S.
        • Bommireddy A.
        • Hawkins W.G.
        • Wang-Gillam A.
        • Fields R.C.
        • et al.
        Ablative five-fraction stereotactic body radiation therapy for inoperable pancreatic cancer using online MR-guided adaptation.
        Adv Radiat Oncol. 2021; 6: 100506https://doi.org/10.1016/j.adro.2020.06.010
        • Henke L.E.
        • Olsen J.R.
        • Contreras J.A.
        • Curcuru A.
        • DeWees T.A.
        • Green O.L.
        • et al.
        Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial.
        Adv Radiat Oncol. 2019; 4: 201-209https://doi.org/10.1016/j.adro.2018.10.003
        • Henke L.E.
        • Kashani R.
        • Hilliard J.
        • DeWees T.A.
        • Curcuru A.
        • Przybysz D.
        • et al.
        In silico trial of MR-guided midtreatment adaptive planning for hypofractionated stereotactic radiation therapy in centrally located thoracic tumors.
        Int J Radiat Oncol Biol Phys. 2018; 102: 987-995https://doi.org/10.1016/j.ijrobp.2018.06.022
        • Henke L.E.
        • Stanley J.A.
        • Robinson C.
        • Srivastava A.
        • Contreras J.A.
        • Curcuru A.
        • et al.
        Phase I trial of stereotactic MRI-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic ovarian cancer.
        Int J Radiat Oncol Biol Phys. 2022; 112: 379-389https://doi.org/10.1016/j.ijrobp.2021.08.033
        • Henke L.
        • Kashani R.
        • Robinson C.
        • Curcuru A.
        • DeWees T.
        • Bradley J.
        • et al.
        Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen.
        Radiother Oncol. 2018; 126: 519-526https://doi.org/10.1016/j.radonc.2017.11.032
        • Hijab A.
        • Tocco B.
        • Hanson I.
        • Meijer H.
        • Nyborg C.J.
        • Bertelsen A.S.
        • et al.
        MR-Guided adaptive radiotherapy for bladder cancer.
        Front Oncol. 2021; 11: 637591https://doi.org/10.3389/fonc.2021.637591
        • Otazo R.
        • Lambin P.
        • Pignol J.-P.
        • Ladd M.E.
        • Schlemmer H.-P.
        • Baumann M.
        • et al.
        MRI-guided radiation therapy: an emerging paradigm in adaptive radiation oncology.
        Radiology. 2021; 298: 248-260https://doi.org/10.1148/radiol.2020202747
        • Witt J.S.
        • Rosenberg S.A.
        • Bassetti M.F.
        MRI-guided adaptive radiotherapy for liver tumours: visualising the future.
        Lancet Oncol. 2020; 21: e74-e82https://doi.org/10.1016/S1470-2045(20)30034-6
        • Doty D.G.
        • Chuong M.D.
        • Gomez A.G.
        • Bryant J.
        • Contreras J.
        • Romaguera T.
        • et al.
        Stereotactic MR-guided online adaptive radiotherapy reirradiation (SMART reRT) for locally recurrent pancreatic adenocarcinoma: a case report.
        Med Dosim. 2021; 46: 384-388https://doi.org/10.1016/j.meddos.2021.04.006
        • Magallon-Baro A.
        • Milder M.T.W.
        • Granton P.V.
        • Nuyttens J.J.
        • Hoogeman M.S.
        Comparison of daily online plan adaptation strategies for a cohort of pancreatic cancer patients Treated with SBRT.
        Int J Radiat Oncol Biol Phys. 2021; 111: 208-219https://doi.org/10.1016/j.ijrobp.2021.03.050
        • Chuong M.D.
        • Bryant J.
        • Mittauer K.E.
        • Hall M.
        • Kotecha R.
        • Alvarez D.
        • et al.
        Ablative 5-fraction stereotactic magnetic resonance-guided radiation therapy with on-table adaptive replanning and elective nodal irradiation for inoperable pancreas cancer.
        Pract Radiat Oncol. 2021; 11: 134-147https://doi.org/10.1016/j.prro.2020.09.005
        • Kim T.
        • Ji Z.
        • Lewis B.
        • Laugeman E.
        • Price A.
        • Hao Y.
        • et al.
        Visually guided respiratory motion management for Ethos adaptive radiotherapy.
        J Appl Clin Med Phys. 2022; 23: e13441https://doi.org/10.1002/acm2.13441
        • Laugeman E.
        • Heermann A.
        • Hilliard J.
        • Watts M.
        • Roberson M.
        • Morris R.
        • et al.
        Comprehensive validation of halcyon 2.0 plans and the implementation of patient specific QA with multiple detector platforms.
        J Appl Clin Med Phys. 2020; 21: 39-48https://doi.org/10.1002/acm2.12881
        • Gao S.
        • Chetvertkov M.A.
        • Cai B.
        • Dwivedi A.
        • Mihailidis D.
        • Ray X.
        • et al.
        Beam energy metrics for the acceptance and quality assurance of Halcyon linear accelerator.
        J Appl Clin Med Phys. 2021; 22: 121-127https://doi.org/10.1002/acm2.13281
        • Bohoudi O.
        • Bruynzeel A.M.E.
        • Senan S.
        • Cuijpers J.P.
        • Slotman B.J.
        • Lagerwaard F.J.
        • et al.
        Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer.
        Radiother Oncol. 2017; 125: 439-444https://doi.org/10.1016/j.radonc.2017.07.028
        • Archambault Y.
        • Boylan C.
        • Bullock D.
        • Morgas T.
        • Peltola J.
        • Ruokokoski E.
        • et al.
        Making on-line adaptive radiotherapy possible using artificial intelligence and machine learning for efficient daily re-planning.
        Med Phys Int. 2020; 8: 77-86
        • Huguet F.
        • Rivin Del Campo E.
        • Orthuon A.
        • Mornex F.
        • Bessières I.
        • Guimas V.
        • et al.
        Radiation therapy of pancreatic cancers.
        Cancer Radiother. 2021; S1278–3218: 00199-00202https://doi.org/10.1016/j.canrad.2021.08.010
        • Huguet F.
        • Hajj C.
        • Winston C.B.
        • Shi W.
        • Zhang Z.
        • Wu A.J.
        • et al.
        Chemotherapy and intensity-modulated radiation therapy for locally advanced pancreatic cancer achieves a high rate of R0 resection.
        Acta Oncol. 2017; 56: 384-390https://doi.org/10.1080/0284186X.2016.1245862
        • Kishan A.
        • Lee P.
        Having your cake and eating it too: combining SBRT and multi-agent chemotherapy in locally advanced pancreatic cancer.
        Cureus. 2016; 8: e686https://doi.org/10.7759/cureus.686
        • Herman J.M.
        • Chang D.T.
        • Goodman K.A.
        • Dholakia A.S.
        • Raman S.P.
        • Hacker-Prietz A.
        • et al.
        Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma.
        Cancer. 2015; 121: 1128-1137https://doi.org/10.1002/cncr.29161
        • Conroy T.
        • Hammel P.
        • Hebbar M.
        • Ben Abdelghani M.
        • Wei A.C.
        • Raoul J.-L.
        • et al.
        FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer.
        NEJM. 2018; 379: 2395-2406https://doi.org/10.1056/NEJMoa1809775
        • Crane C.H.
        Hypofractionated ablative radiotherapy for locally advanced pancreatic cancer.
        J Radiat Res. 2016; 57: i53-i57https://doi.org/10.1093/jrr/rrw016
        • Courtney P.T.
        • Paravati A.J.
        • Atwood T.F.
        • Raja N.
        • Zimmerman C.T.
        • Fanta P.T.
        • et al.
        Phase I trial of stereotactic body radiation therapy dose escalation in pancreatic cancer.
        Int J Radiat Oncol Biol Phys. 2021; 110: 1003-1012https://doi.org/10.1016/j.ijrobp.2021.02.008
        • Shaib W.L.
        • Hawk N.
        • Cassidy R.J.
        • Chen Z.
        • Zhang C.
        • Brutcher E.
        • et al.
        A phase 1 study of stereotactic body radiation therapy dose escalation for borderline resectable pancreatic cancer after modified FOLFIRINOX (NCT01446458).
        Int J Radiat Oncol Biol Phys. 2016; 96: 296-303https://doi.org/10.1016/j.ijrobp.2016.05.010
        • Mahadevan A.
        • Miksad R.
        • Goldstein M.
        • Sullivan R.
        • Bullock A.
        • Buchbinder E.
        • et al.
        Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer.
        Int J Radiat Oncol Biol Phys. 2011; 81: e615-e622https://doi.org/10.1016/j.ijrobp.2011.04.045
        • Takatori K.
        • Terashima K.
        • Yoshida R.
        • Horai A.
        • Satake S.
        • Ose T.
        • et al.
        Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer.
        J Gastroenterol. 2014; 49: 1074-1080https://doi.org/10.1007/s00535-013-0857-3
        • Hiroshima Y.
        • Fukumitsu N.
        • Saito T.
        • Numajiri H.
        • Murofushi K.N.
        • Ohnishi K.
        • et al.
        Concurrent chemoradiotherapy using proton beams for unresectable locally advanced pancreatic cancer.
        Radiother Oncol. 2019; 136: 37-43https://doi.org/10.1016/j.radonc.2019.03.012
        • Kransdorf M.J.
        • Murphey M.D.
        Radiologic evaluation of soft-tissue masses: a current perspective.
        AJR Am J Roentgenol. 2000; 175: 575-587https://doi.org/10.2214/ajr.175.3.1750575
        • Kathiravan S.
        • Kanakaraj J.
        A review on potential issues and challenges in MR imaging.
        Sci World J. 2013; 2013: 783715https://doi.org/10.1155/2013/783715