Advertisement

Changes in Radical Levels as a Cause for the FLASH effect: Impact of beam structure parameters at ultra-high dose rates on oxygen depletion in water

  • Jeannette Jansen
    Affiliations
    Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Search for articles by this author
  • Elke Beyreuther
    Affiliations
    OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden–Rossendorf, Dresden, Germany

    Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
    Search for articles by this author
  • Daniel García-Calderón
    Affiliations
    Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
    Search for articles by this author
  • Leonhard Karsch
    Affiliations
    OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden–Rossendorf, Dresden, Germany

    Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Institute of Radiooncology – OncoRay, Dresden, Germany
    Search for articles by this author
  • Jan Knoll
    Affiliations
    Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
    Search for articles by this author
  • Jörg Pawelke
    Affiliations
    OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden–Rossendorf, Dresden, Germany

    Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Institute of Radiooncology – OncoRay, Dresden, Germany
    Search for articles by this author
  • Michael Schürer
    Affiliations
    National Center for Tumor Diseases Dresden (NCT/UCC), Germany: GermanCancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden,Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
    Search for articles by this author
  • Joao Seco
    Correspondence
    Corresponding author at: German Cancer Research Center (DKFZ) Division of Biomedical Physics in Radiation Oncology Im Neuenheimer Feld 280 69120 Heidelberg Germany.
    Affiliations
    Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
    Search for articles by this author

      Highlights

      • O2 depletion in water is affected by beam pulse patterns.
      • Average dose rate has higher impact than pulse dose rate.
      • Water results correlate with biological data on FLASH effect => radicals as cause for FLASH effect.

      Abstract

      The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kacem H.
        • Almeida A.
        • Cherbuin N.
        • Vozenin M.-C.
        Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation.
        Int J Radiat Biol. 2022; 98: 505-516
        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6: 1-10
        • Vozenin M.-C.
        • De Fornel P.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.-F.
        • et al.
        The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients.
        Clin Cancer Res. 2019; 25: 35-42
        • Bourhis J.
        • Montay-Gruel P.
        • Jorge P.G.
        • Bailat C.
        • Petit B.
        • Ollivier J.
        • et al.
        Clinical translation of FLASH radiotherapy: why and how?.
        Radiother Oncol. 2019; 139: 11-17
        • Konradsson E.
        • Arendt M.L.
        • Bastholm Jensen K.
        • Børresen B.
        • Hansen A.E.
        • Bäck S.
        • et al.
        Establishment and initial experience of clinical FLASH radiotherapy in canine cancer patients.
        Front Oncol. 2021; 11
        • Velalopoulou A.
        • Karagounis I.V.
        • Cramer G.M.
        • Kim M.M.
        • Skoufos G.
        • Goia D.
        • et al.
        FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response.
        Cancer Res. 2021; 81: 4808-4821
        • Weiss H.
        • Epp E.R.
        • Heslin J.M.
        • Ling C.C.
        • Santomasso A.
        Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates.
        Int J Radiat Biol. 1974; 26: 17-29
        • Adrian G.
        • Konradsson E.
        • Beyer S.
        • Wittrup A.
        • Butterworth K.T.
        • McMahon S.J.
        • et al.
        Cancer cells can exhibit a sparing FLASH effect at low doses under normoxic in vitro-conditions.
        Front Oncol. 2021; : 2890
        • Adrian G.
        • Konradsson E.
        • Lempart M.
        • Bäck S.
        • Ceberg C.
        • Petersson K.
        The FLASH effect depends on oxygen concentration.
        British J Radiol. 2020; 92: 20190702
        • Pawelke J.
        • Brand M.
        • Hans S.
        • Hideghéty K.
        • Karsch L.
        • Lessmann E.
        • et al.
        Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage.
        Radiother Oncol. 2021; 158: 7-12
        • Boscolo D.
        • Scifoni E.
        • Durante M.
        • Krämer M.
        • Fuss M.C.
        May Oxygen depletion explain the FLASH effect? A chemical track structure analysis.
        Radiother Oncol. 2021; 162: 69-75
        • Jansen J.
        • Knoll J.
        • Beyreuther E.
        • Pawelke J.
        • Skuza R.
        • Hanley R.
        • et al.
        Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions.
        Med Phys. 2021; 48: 3982-3990
        • Van Slyke A.
        • El Khatib M.
        • Velalopoulou A.
        • Diffenderfer E.
        • Shoniyozov K.
        • Kim M.
        • et al.
        Oxygen monitoring in model solutions and in vivo in mice during proton irradiation at conventional and FLASH dose rates.
        Radiat Res. 2022;
        • Lai Y.
        • Jia X.
        • Chi Y.
        Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy.
        Phys Med Biol. 2021; 66: 025004
        • Cao X.
        • Zhang R.
        • Esipova T.V.
        • Allu S.R.
        • Ashraf R.
        • Rahman M.
        • et al.
        Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo.
        Int J Radiat Oncol* Biol* Phys. 2021;
        • Favaudon V.
        • Labarbe R.
        • Limoli C.L.
        Model studies of the role of oxygen in the FLASH effect.
        Med Phys. 2021; 49: 2068-2081
        • Jin J.Y.
        • Gu A.
        • Wang W.
        • Oleinick N.L.
        • Machtay M.S.K.F.M.
        Ultra-high dose rate effect on circulating immune cells: a potential mechanism for FLASH effect?.
        Radiother Oncol: J Eur Soc Therapeutic Radiol Oncol. 2020; 149: 55-62
        • Vozenin M.-C.
        • Montay-Gruel P.
        • Limoli C.
        • Germond J.-F.
        All irradiations that are ultra-high dose rate may not be FLASH: the critical importance of beam parameter characterization and in vivo validation of the FLASH effect.
        Radiat Res. 2020; 194: 571-572
        • Karsch L.
        • Pawelke J.
        • Brand M.
        • Hans S.
        • Hideghéty K.
        • Jansen J.
        • et al.
        Beam pulse structure and dose rate as determinants for the Flash effect observed in zebrafish embryo.
        Int J Radiother Oncol. 2022; 173: 49-54
        • Howard-Flanders P.
        • Moore D.
        The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation.
        Radiat Res. 1958; 9: 422-437
        • Wilson J.D.
        • Hammond E.M.
        • Higgins G.S.
        • Petersson K.
        Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool's gold?.
        Front Oncol. 2020; 9: 1563
        • Gabriel F.
        • Gippner P.
        • Grosse E.
        • Janssen D.
        • Michel P.
        • Prade H.
        • et al.
        The Rossendorf radiation source ELBE and its FEL projects.
        Nucl Instrum Methods Phys Res, Sect B. 2000; 161–163: 1143-1147
        • Karsch L.
        • Beyreuther E.
        • Burris-Mog T.
        • Kraft S.
        • Richter C.
        • Zeil K.
        • et al.
        Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors.
        Med Phys. 2012; 39: 2447-2455
        • Boscolo D.
        • Krämer M.
        • Fuss M.C.
        • Durante M.
        • Scifoni E.
        Impact of target oxygenation on the chemical track evolution of ion and electron radiation.
        Int J Mol Sci. 2020; 21: 424
        • Boscolo D.
        • Scifoni E.
        • Durante M.
        • Krämer M.
        • Fuss M.C.
        Response to “Comment on: May oxygen depletion explain the FLASH effect? A chemical track structure analysis”.
        Radiother Oncol. 2021; 163: 237-239
        • El Khatib M.
        • Van Slyke A.L.
        • Velalopoulou A.
        • Kim M.M.
        • Shoniyozov K.
        • Allu S.R.
        • et al.
        Utrafast tracking of oxygen dynamics during proton FLASH.
        Int J Radiat Oncol Biol Phys. 2022; 113: 624-634
        • Brand M.
        • Granato M.
        • Nüsslein-Vollhard C.
        Keeping and raising zebrafish.
        in: Zebrafish pract approach. Oxford University Press, Oxford2002: 7-37
      1. Blain G, Vandenborre J, Villoing D, Fiegel V, Fois GR, Haddad F, et al. Proton irradiations at ultra-high dose rate vs. conventional dose rate: strong impact on hydrogen peroxide yield. Radiat Res; 2022 [in press].

      2. Kacem H, Psoroulas S, Boivin G, Folkerts M, Grilj V, Lomax T, et al. Comparing radiolytic production of H 2 O 2 and development of Zebrafish embryos after ultra high dose rate exposure with electron and Transmission proton beams, Radiother Oncol 2022;175:197–202.

        • Labarbe R.
        • Hotoiu L.
        • Barbier J.
        • Favaudon V.
        A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect.
        Radiother Oncol. 2020; 175: 303-310