Advertisement

H&N and Skin (HNS) GEC-ESTRO Working Group critical review of recommendations regarding prescription depth, bolus thickness and maximum dose in skin superficial brachytherapy with flaps and customized moulds

      Highlights

      • Guidelines on skin superficial BT do not fully reflect the clinical practice of large tumors.
      • No dosimetry parameters-PROM relationships are found in skin cancer superficial BT.
      • Publications using constraints beyond recommendations meet excellent results.

      Abstract

      The aim of this publication is the assessment of the existing guidelines for non-melanoma skin cancer (NMSC) superficial brachytherapy (BT) and make a critical review based on the existing literature about the maximum dose prescription depth, bolus thickness and maximum skin surface dose (Dmax) of the published clinical practice.
      A systematic review of NMSC superficial BT published articles was carried out by the GEC-ESTRO Head & Neck and Skin (HNS) Working Group (WG). 10 members and 2 external reviewers compared the published clinical procedures with the recommendations in the current guidelines and examined the grade of evidence. Our review verified that there is a large variation among centres with regards to clinical practice in superficial BT and identified studies where published parameters such as maximum dose prescription depth, bolus thickness and Dmax exceed the constraints recommended in the guidelines, while showing excellent results in terms of local control, toxicity and cosmesis.
      This review confirmed that current recommendations on skin superficial BT do not include published experience on tumours treated with superficial BT that require dose prescription depth beyond the recommended 5 mm under the skin surface and that the existing literature does not provide sufficient evidence to relate dosimetry of superficial BT to patient reported outcome measures.
      The GEC-ESTRO HNS WG considers acceptable to prescribe superficial BT dose at a depth above 5 mm beyond the skin surface, and modify the bolus thickness to optimize the treatment plan and adjust the acceptable maximum dose on the skin surface, all pending clinical situation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alam M.
        • Nanda S.
        • Mittal B.B.
        • Kim N.A.
        • Yoo S.
        The use of brachytherapy in the treatment of nonmelanoma skin cancer: A review.
        J Am Acad Dermatol. 2011; https://doi.org/10.1016/j.jaad.2010.03.027
        • Delishaj D.
        • Rembielak A.
        • Manfredi B.
        • Ursino S.
        • Pasqualetti F.
        • Laliscia C.
        • et al.
        Non-melanoma skin cancer treated with high-dose-rate brachytherapy: A review of literature.
        J Contemp Brachytherapy. 2016; https://doi.org/10.5114/jcb.2016.64112
        • Guinot J.L.
        • Perez-Calatayud J.
        • Van Limbergen E.
        Skin cancer. GEC-ESTRO Handb.
        Brachytherapy. 2017;
        • Ouhib Z.
        • Kasper M.
        • Perez Calatayud J.
        • Rodriguez S.
        • Bhatnagar A.
        • Pai S.
        • et al.
        Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report.
        Brachytherapy. 2015; https://doi.org/10.1016/j.brachy.2015.06.005
        • Guinot J.L.
        • Rembielak A.
        • Perez-Calatayud J.
        • Rodríguez-Villalba S.
        • Skowronek J.
        • Tagliaferri L.
        • et al.
        GEC-ESTRO ACROP recommendations in skin brachytherapy.
        Radiother Oncol. 2018; https://doi.org/10.1016/j.radonc.2018.01.013
        • Rodríguez S.
        • Arenas M.
        • Gutierrez C.
        • Richart J.
        • Perez-Calatayud J.
        • Celada F.
        • et al.
        Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy.
        Clin Transl Oncol. 2018; https://doi.org/10.1007/s12094-017-1733-z
        • Fulkerson R.K.
        • Perez-Calatayud J.
        • Ballester F.
        • Buzurovic I.
        • Kim Y.
        • Niatsetski Y.
        • et al.
        Surface brachytherapy: Joint report of the AAPM and the GEC-ESTRO Task Group.
        Med Phys. 2020; No. 253https://doi.org/10.1002/mp.14436
        • Shah C.
        • Ouhib Z.
        • Kamrava M.
        • Koyfman S.A.
        • Campbell S.R.
        • Bhatnagar A.
        • et al.
        The American Brachytherapy society consensus statement for skin brachytherapy.
        Brachytherapy. 2020; https://doi.org/10.1016/j.brachy.2020.04.004
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gøtzsche P.C.
        • Ioannidis J.P.A.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration.
        Ann Intern Med. 2009; 151https://doi.org/10.7326/0003-4819-151-4-200908180-00136
        • Arenas M.
        • Arguís M.
        • Díez-Presa L.
        • Henríquez I.
        • Murcia-Mejía M.
        • Gascón M.
        • et al.
        Hypofractionated high-dose-rate plesiotherapy in nonmelanoma skin cancer treatment.
        Brachytherapy. 2015; https://doi.org/10.1016/j.brachy.2015.09.001
        • Maroñas M.
        • Guinot J.L.
        • Arribas L.
        • Carrascosa M.
        • Tortajada M.I.
        • Carmona R.
        • et al.
        Treatment of facial cutaneous carcinoma with high-dose rate contact brachytherapy with customized molds.
        Brachytherapy. 2011; https://doi.org/10.1016/j.brachy.2010.08.005
        • Guix B.
        • Finestres F.
        • Tello J.I.
        • Palma C.
        • Martinez A.
        • Guix J.R.
        • et al.
        Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds.
        Int J Radiat Oncol Biol Phys. 2000; https://doi.org/10.1016/S0360-3016(99)00547-7
        • Montero Á.
        • Hernanz R.
        • Capuz A.B.
        • Fernández E.
        • Hervás A.
        • Colmenares R.
        • et al.
        High-dose-rate (HDR) plesiotherapy with custom-made moulds for the treatment of non-melanoma skin cancer.
        Clin Transl Oncol. 2009; https://doi.org/10.1007/s12094-009-0439-2
        • Musmacher J.
        • Ghaly M.
        • Satchwill K.
        High dose rate brachytherapy with surface applicators: Treatment for nonmelanomatous skin cancer.
        J Clin Oncol. 2006; 24 (15543–15543)https://doi.org/10.1200/JCO.2006.24.18_SUPPL.15543
        • Boman E.L.
        • Paterson D.B.
        • Pearson S.
        • Naidoo N.
        • Johnson C.
        Dosimetric comparison of surface mould HDR brachytherapy with VMAT.
        J Med Radiat Sci. 2018; 65: 311-318https://doi.org/10.1002/JMRS.301
        • Fabrini M.G.
        • Perrone F.
        • De Liguoro M.
        • Cionini L.
        High-dose-rate brachytherapy in a large squamous cell carcinoma of the hand.
        Brachytherapy. 2008; 7: 270-275https://doi.org/10.1016/J.BRACHY.2008.04.004
        • Rudoltz M.S.
        • Perkins R.S.
        • Luthmann R.W.
        • Fracke T.D.
        • Green T.M.
        • Eaglstein N.F.
        • et al.
        High-dose-rate brachytherapy with a custom-surface mold to treat recurrent squamous cell carcinomas of the skin of the forearm.
        J Am Acad Dermatol. 1998; 38: 1003-1005https://doi.org/10.1016/S0190-9622(98)70593-6
        • Jaberi R
        • Siavashpour Z
        • Akha ZN
        • Gholami MH
        • Biniaz M
        Validation of an individualized home-made superficial brachytherapy mold applied for Non Melanoma Skin Cancer.
        Research Square (Preprint). 2021; https://doi.org/10.21203/rs.3.rs-261044/v1
        • Jones E.L.
        • Tonino Baldion A.
        • Thomas C.
        • Burrows T.
        • Byrne N.
        • Newton V.
        • et al.
        Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy.
        Brachytherapy. 2017; https://doi.org/10.1016/j.brachy.2016.11.003
        • Kuncman L.
        • Kozlowski S.
        • Pietraszek A.
        • Pietrzykowska-Kuncman M.
        • Danielska J.
        • Sobotkowski J.
        • et al.
        Highly conformal CT based surface mould brachytherapy for non-melanoma skin cancers of earlobe and nose.
        J Contemp Brachytherapy. 2016; https://doi.org/10.5114/jcb.2016.61066
        • Bassi S.
        • Langan B.
        • Malone C.
        Dosimetry assessment of patient-specific 3D printable materials for HDR surface brachytherapy.
        Phys Medica. 2019; https://doi.org/10.1016/j.ejmp.2019.10.035
        • Rembielak A.
        Complex and prolonged skin toxicity after superficial brachytherapy for basal cell carcinoma on the lower leg.
        J Contemp Brachytherapy. 2020; 12: 406-411https://doi.org/10.5114/JCB.2020.98121
        • Svoboda V.H.J.
        • Kovarik J.
        • Morris F.
        High dose-rate microselectron molds in the treatment of skin tumors.
        Int J Radiat Oncol Biol Phys. 1995; https://doi.org/10.1016/0360-3016(94)00485-4
        • Somanchi B.V.
        • Stanton A.
        • Webb M.
        • Loncaster J.
        • Allan E.
        • Muir L.T.S.W.
        Hand Function after High Dose Rate Brachytherapy for Squamous Cell Carcinoma of the Skin of the Hand.
        Clin Oncol. 2008; https://doi.org/10.1016/j.clon.2008.06.008
        • Semrau S.
        • Kunz M.
        • Baggesen K.
        • Vogel H.
        • Buchmann W.
        • Gross G.
        • et al.
        Successful treatment of field cancerization of the scalp by surface mould brachytherapy.
        Br J Dermatol. 2008; https://doi.org/10.1111/j.1365-2133.2008.08720.x
        • Rose J.N.
        • McLaughlin P.Y.
        • Hanna T.P.
        • D’Souza D.
        • Sur R.
        • Falkson C.B.
        Surface mold brachytherapy for nonmelanoma skin cancer: Canadian patterns of practice.
        Pract Radiat Oncol. 2014; https://doi.org/10.1016/j.prro.2013.12.003
        • Syndikus I.
        • Vinall A.
        • Rogers P.
        • Spittle M.
        High dose rate microselectron moulds for Kaposi sarcoma of the palate.
        Radiother Oncol. 1997; https://doi.org/10.1016/S0167-8140(96)01879-8
        • Budrukkar A.
        • Dasgupta A.
        • Pandit P.
        • Laskar S.G.
        • Murthy V.
        • Upreti R.R.
        • et al.
        Clinical outcomes with high-dose-rate surface mould brachytherapy for intra-oral and skin malignancies involving head and neck region.
        J Contemp Brachytherapy. 2017; https://doi.org/10.5114/jcb.2017.66773
        • Catalano G.
        • Canino P.
        • Cassinotti M.
        • Pagella S.
        • Piazzi V.
        • Re S.
        • et al.
        Ultrasound transmission gel as a bolus device for skin irradiation of irregular surfaces: technical noteUtilizzo di gel per ultrasuoni come bolus nella irradiazione cutanea di superfici irregolari.
        Nota tecnica Radiol Med. 2010; https://doi.org/10.1007/s11547-010-0546-8
        • Veness M.J.
        • Delishaj D.
        • Barnes E.A.
        • Bezugly A.
        • Rembielak A.
        Current Role of Radiotherapy in Non-melanoma Skin Cancer.
        Clin Oncol. 2019; https://doi.org/10.1016/j.clon.2019.08.004
        • Whitley M.J.
        • Cardones A.R.
        • Craciunescu O.I.
        • Kirsch D.G.
        Externally applied high-dose-rate brachytherapy for deeply invasive cutaneous squamous cell carcinoma in an older patient.
        Pract Radiat Oncol. 2016; 6: e141-e144https://doi.org/10.1016/J.PRRO.2015.11.008
        • Kalaghchi B.
        • Esmati E.
        • Ghalehtaki R.
        • Gomar M.
        • Jaberi R.
        • Gholami S.
        • et al.
        High-dose-rate brachytherapy in treatment of non-melanoma skin cancer of head and neck region: preliminary results of a prospective single institution study.
        J Contemp Brachytherapy. 2018; https://doi.org/10.5114/jcb.2018.75596
        • Lancellotta V.
        • Kovács G.
        • Tagliaferri L.
        • Perrucci E.
        • Rembielak A.
        • Stingeni L.
        • et al.
        The role of personalized Interventional Radiotherapy (brachytherapy)in the management of older patients with non-melanoma skin cancer.
        J Geriatr Oncol. 2019; https://doi.org/10.1016/j.jgo.2018.09.009
        • Chan A.
        • D’Souza D.
        • Vujovic O.
        • Rodrigues G.
        • Whiston F.
        • Taylor J.
        • et al.
        High dose rate (HDR) brachytherapy treatment for skin cancer: a novel approach.
        Int J Radiat Oncol. 2003; https://doi.org/10.1016/s0360-3016(03)01425-1
        • Jumeau R.
        • Renard-Oldrini S.
        • Courrech F.
        • Buchheit I.
        • Oldrini G.
        • Vogin G.
        • et al.
        High dose rate brachytherapy with customized applicators for malignant facial skin lesions.
        Cancer/Radiothérapie. 2016; https://doi.org/10.1016/j.canrad.2016.03.008
        • Likhacheva A.O.
        • Devlin P.M.
        • Shirvani S.M.
        • Barker C.A.
        • Beron P.
        • Bhatnagar A.
        • et al.
        Skin surface brachytherapy: A survey of contemporary practice patterns.
        Brachytherapy. 2017; https://doi.org/10.1016/j.brachy.2016.10.006
        • Olek D.
        • El-Ghamry M.N.
        • Deb N.
        • Thawani N.
        • Shaver C.
        • Mutyala S.
        Custom mold applicator high-dose-rate brachytherapy for nonmelanoma skin cancer—An analysis of 273 lesions.
        Brachytherapy. 2018; https://doi.org/10.1016/j.brachy.2018.01.002
        • Zaorsky N.G.
        • Lee C.T.
        • Zhang E.
        • Galloway T.J.
        Skin CanceR Brachytherapy vs External beam radiation therapy (SCRiBE) meta-analysis.
        Radiother Oncol. 2018; https://doi.org/10.1016/j.radonc.2017.12.029
        • Lovett R.D.
        • Perez C.A.
        • Shapiro S.J.
        • Garcia D.M.
        External irradiation of epithelial skin cancer.
        Int J Radiat Oncol Biol Phys. 1990; https://doi.org/10.1016/0360-3016(90)90529-S
        • Silva J.J.
        • Tsang R.W.
        • Panzarella T.
        • Levin W.
        • Wells W.
        Results of radiotherapy for epithelial skin cancer of the pinna: The Princess Margaret Hospital experience, 1982–1993.
        Int J Radiat Oncol Biol Phys. 2000; https://doi.org/10.1016/S0360-3016(00)00410-7
        • Mareco V.
        Reirradiation of Skin Tumors. Mathews.
        J Cancer Sci. 2016;
        • Lee C.T.
        • Lehrer E.J.
        • Aphale A.
        • Lango M.
        • Galloway T.J.
        • Zaorsky N.G.
        Surgical excision, Mohs micrographic surgery, external-beam radiotherapy, or brachytherapy for indolent skin cancer: An international meta-analysis of 58 studies with 21,000 patients.
        Cancer. 2019; https://doi.org/10.1002/cncr.32371
        • Tagliaferri L.
        • Kovács G.
        • Autorino R.
        • Budrukkar A.
        • Guinot J.L.
        • Hildebrand G.
        • et al.
        ENT COBRA (Consortium for Brachytherapy Data Analysis): Interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy).
        J Contemp Brachytherapy. 2016; https://doi.org/10.5114/jcb.2016.61958
        • Tagliaferri L.
        • Budrukkar A.
        • Lenkowicz J.
        • Cambeiro M.
        • Bussu F.
        • Guinot J.L.
        • et al.
        Ent cobra ontology: the covariates classification system proposed by the Head & Neck and Skin GEC-ESTRO Working Group for interdisciplinary standardized data collection in head and neck patient cohorts treated with interventional radiotherapy (brachythera.
        J Contemp Brachytherapy. 2018; https://doi.org/10.5114/jcb.2018.76982
        • Lancellotta V.
        • Guinot J.L.
        • Fionda B.
        • Rembielak A.
        • Di Stefani A.
        • Gentileschi S.
        • et al.
        SKIN-COBRA (Consortium for Brachytherapy data Analysis) ontology: The first step towards interdisciplinary standardized data collection for personalized oncology in skin cancer.
        J Contemp Brachytherapy. 2020; https://doi.org/10.5114/jcb.2020.94579
        • Nath R.
        • Bice W.S.
        • Butler W.M.
        • Chen Z.
        • Meigooni A.S.
        • Narayana V.
        • et al.
        AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: Report of Task Group 137.
        Med Phys. 2009; https://doi.org/10.1118/1.3246613
        • Salembier C.
        • Lavagnini P.
        • Nickers P.
        • Mangili P.
        • Rijnders A.
        • Polo A.
        • et al.
        Tumour and target volumes in permanent prostate brachytherapy: A supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy.
        Radiother Oncol. 2007; https://doi.org/10.1016/j.radonc.2007.01.014
        • Shah C.
        • Vicini F.
        • Wazer D.E.
        • Arthur D.
        • Patel R.R.
        The American Brachytherapy Society consensus statement for accelerated partial breast irradiation.
        Brachytherapy. 2013; https://doi.org/10.1016/j.brachy.2013.02.001
        • Cuttino L.W.
        • Heffernan J.
        • Vera R.
        • Rosu M.
        • Ramakrishnan V.R.
        • Arthur D.W.
        Association between maximal skin dose and breast brachytherapy outcome: A proposal for more rigorous dosimetric constraints.
        Int J Radiat Oncol Biol Phys. 2011; https://doi.org/10.1016/j.ijrobp.2010.12.023
        • Hilts M.
        • Halperin H.
        • Morton D.
        • Batchelar D.
        • Bachand F.
        • Chowdhury R.
        • et al.
        Skin dose in breast brachytherapy: Defining a robust metric.
        Brachytherapy. 2015; https://doi.org/10.1016/j.brachy.2015.08.002
        • Warszawski A.
        • Röttinger E.M.
        • Vogel R.
        • Warszawski N.
        20 MHz ultrasonic imaging for quantitative assessment and documentation of early and late postradiation skin reactions in breast cancer patients.
        Radiother Oncol. 1998; https://doi.org/10.1016/S0167-8140(97)00201-6
        • Liu T.
        • Zhou J.
        • Yoshida E.J.
        • Woodhouse S.A.
        • Schiff P.B.
        • Wang T.J.C.
        • et al.
        Quantitative ultrasonic evaluation of radiation-induced late tissue toxicity: Pilot study of breast cancer radiotherapy.
        Int J Radiat Oncol Biol Phys. 2010; https://doi.org/10.1016/j.ijrobp.2009.08.071
      1. Joiner MC, van der Kogel A. Basic Clinical Radiobiology. fourth ed. London: CRC Press; 2009. https://doi.org/10.1201/b13224.

        • Gifford K.A.
        • Pacha O.
        • Hebert A.A.
        • Nelson C.L.
        • Kirsner S.M.
        • Ballo M.T.
        • et al.
        A new paradigm for calculating skin dose.
        Brachytherapy. 2013; https://doi.org/10.1016/j.brachy.2012.05.005
        • Turesson I.
        • Nyman J.
        • Holmberg E.
        • Oden A.
        Prognostic factors for acute and late skin reactions in radiotheraphy patients.
        Int J Radiat Oncol Biol Phys. 1996; https://doi.org/10.1016/S0360-3016(96)00426-9
        • Krasin M.J.
        • Hoth K.A.
        • Hua C.
        • Gray J.M.
        • Wu S.
        • Xiong X.
        Incidence and Correlates of Radiation Dermatitis in Children and Adolescents Receiving Radiation Therapy for the Treatment of Paediatric Sarcomas.
        Clin Oncol. 2009; https://doi.org/10.1016/j.clon.2009.09.022
        • Granero D.
        • Perez-Calatayud J.
        • Vijande J.
        • Ballester F.
        • Rivard M.J.
        Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations.
        Med Phys. 2014; https://doi.org/10.1118/1.4860175
        • Vijande J.
        • Ballester F.
        • Ouhib Z.
        • Granero D.
        • Pujades-Claumarchirant M.C.
        • Perez-Calatayud J.
        Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy.
        Brachytherapy. 2012; https://doi.org/10.1016/j.brachy.2011.11.005
        • Szlag M.
        • Kellas-Sleczka S.
        • Wojcieszek P.
        • Stankiewicz M.
        • Cholewka A.
        • Pruefer A.
        • et al.
        Advanced dose calculation algorithm in superficial brachytherapy – the impact of tissue inhomogeneity on treatment plan dosimetry.
        J Contemp Brachytherapy. 2021; https://doi.org/10.5114/jcb.2021.106541
        • Boman E.L.
        • Satherley T.W.S.
        • Schleich N.
        • Paterson D.B.
        • Greig L.
        • Louwe R.J.W.
        The validity of Acuros BV and TG-43 for high-dose-rate brachytherapy superficial mold treatments.
        Brachytherapy. 2017; https://doi.org/10.1016/j.brachy.2017.08.010