Advertisement

A systematic review of clinical studies on variable proton Relative Biological Effectiveness (RBE)

  • Tracy S.A. Underwood
    Correspondence
    Corresponding author at: Leo Cancer Care Ltd, Unit 1, Woodbridge House, Chapel Road, Smallfield, Horley, RH6 9NW, UK.
    Affiliations
    Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK

    Leo Cancer Care Ltd, Unit 1, Woodbridge House, Chapel Road, Smallfield, Horley, UK
    Search for articles by this author
  • Aimee L. McNamara
    Affiliations
    Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
    Search for articles by this author
  • Ane Appelt
    Affiliations
    Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK

    Department of Medical Physics, Leeds Cancer Centre, St James’s University Hospital, Leeds, UK
    Search for articles by this author
  • Joanne S. Haviland
    Affiliations
    Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
    Search for articles by this author
  • Brita Singers Sørensen
    Affiliations
    Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark

    Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
    Search for articles by this author
  • Esther G.C. Troost
    Affiliations
    Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

    OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

    National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

    Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany

    German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
    Search for articles by this author

      Highlights

      • Many clinical studies have analysed patient toxicities/image changes to investigate proton RBE.
      • Clinical evidence for variable proton RBE remains statistically weak.
      • Expert statistical advice should be sought during study planning.
      • Proton centres should collaborate on follow-up, enabling larger patient cohorts to be considered.

      Abstract

      Recently, a number of clinical studies have explored links between possible Relative Biological Effectiveness (RBE) elevations and patient toxicities and/or image changes following proton therapy. Our objective was to perform a systematic review of such studies. We applied a “Problem [RBE], Intervention [Protons], Population [Patients], Outcome [Side effect]” search strategy to the PubMed database. From our search, we retrieved studies which: (a) performed novel voxel-wise analyses of patient effects versus physical dose and LET (n = 13), and (b) compared image changes between proton and photon cohorts with regard to proton RBE (n = 9). For each retrieved study, we extracted data regarding: primary tumour type; size of patient cohort; type of image change studied; image-registration method (deformable or rigid); LET calculation method, and statistical methodology. We compared and contrasted their methods in order to discuss the weight of clinical evidence for variable proton RBE. We concluded that clinical evidence for variable proton RBE remains statistically weak at present. Our principal recommendation is that proton centres and clinical trial teams collaborate to standardize follow-up protocols and statistical analysis methods, so that larger patient cohorts can ultimately be considered for RBE analyses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tepper J.
        • Verhey L.
        • Goitein M.
        • Suit H.D.
        • Phil D.
        • Koehler A.M.
        In vivo determinations of RBE in a high energy modulated proton beam using normal tissue reactions and fractionated dose schedules.
        Int J Radiat Oncol Biol Phys. 1977; 2: 1115-1122https://doi.org/10.1016/0360-3016(77)90118-3
        • Paganetti H.
        Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer.
        Phys Med Biol. 2014; 59: R419-R472https://doi.org/10.1088/0031-9155/59/22/R419
        • Jones B.
        Why RBE must be a variable and not a constant in proton therapy.
        Br J Radiol. 2016; 89: 1-10https://doi.org/10.1259/bjr.20160116
        • Tommasino F.
        • Durante M.
        Proton radiobiology.
        Cancers (Basel). 2015; 7: 353-381https://doi.org/10.3390/cancers7010353
        • Paganetti H.
        • Blakely E.
        • Carabe-Fernandez A.
        • Carlson D.J.
        • Das I.J.
        • Dong L.
        • et al.
        Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy.
        Med Phys. 2019; 46: e53-e78https://doi.org/10.1002/mp.13390
        • Dörr W.
        Radiobiology of tissue reactions.
        Ann ICRP. 2013; : 58-68https://doi.org/10.1177/0146645314560686
      1. Zeman EM. 1 – The biological basis of radiation oncology. 5th ed. Elsevier Inc.; n.d. https://doi.org/10.1016/B978-0-323-67246-7.00001-3.

        • Rorvik E.
        • Fjera L.F.
        • Dahle T.J.
        • Dale J.E.
        • Engeseth G.M.
        • Stokkevag C.H.
        • et al.
        Exploration and application of phenomenological RBE models for proton therapy.
        Phys Med Biol. 2018; 63https://doi.org/10.1088/1361-6560/aad9db
        • Mishra K.K.
        • Daftari I.K.
        Proton therapy for the management of uveal melanoma and other ocular tumors.
        Chin Clin Oncol. 2016; 5: 1-7
        • Haas-Kogan D.
        • Indelicato D.
        • Paganetti H.
        • Esiashvili N.
        • Mahajan A.
        • Yock T.
        • et al.
        National Cancer Institute Workshop on Proton Therapy for Children: considerations regarding brainstem injury.
        Int J Radiat Oncol Biol Phys. 2018; 101: 152-168https://doi.org/10.1016/j.ijrobp.2018.01.013
        • Sørensen B.S.
        • Pawelke J.
        • Bauer J.
        • Burnet N.G.
        • Dasu A.
        • Høyer M.
        • et al.
        Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy?.
        Radiother Oncol. 2021; 163: 177-184https://doi.org/10.1016/j.radonc.2021.08.016
        • Jones B.
        • Wilson P.
        • Nagano A.
        • Fenwick J.
        • Mckenna G.
        Dilemmas concerning dose distribution and the influence of relative biological effect in proton beam therapy of medulloblastoma.
        Br J Radiol. 2012; 85: 215869https://doi.org/10.1259/bjr/24498486
        • Marteinsdottir M.
        • Paganetti H.
        Applying a variable relative biological effectiveness (RBE) might affect the analysis of clinical trials comparing photon and proton therapy for prostate cancer.
        Phys Med Biol. 2019; 64https://doi.org/10.1088/1361-6560/ab2144
        • Underwood T.
        • Paganetti H.
        Variable proton relative biological effectiveness: how do we move forward?.
        Int J Radiat Oncol Biol Phys. 2016; 95https://doi.org/10.1016/j.ijrobp.2015.10.006
        • Deng W.
        • Yang Y.
        • Liu C.
        • Bues M.
        • Mohan R.
        • Wong W.W.
        • et al.
        A critical review of LET-based intensity- modulated proton therapy plan evaluation and optimization for head and neck cancer management.
        Int J Particle Ther. 2021; 8: 36-49
        • Wagenaar D.
        • Schuit E.
        • van der Schaaf A.
        • Langendijk J.A.
        • Both S.
        Can the mean linear energy transfer of organs be directly related to patient toxicities for current head and neck cancer intensity-modulated proton therapy practice?.
        Radiother Oncol. 2021; 165: 159-165https://doi.org/10.1016/j.radonc.2021.09.003
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        PLoS Med. 2021; 18: 1-15https://doi.org/10.1371/JOURNAL.PMED.1003583
        • Peeler C.R.
        • Mirkovic D.
        • Titt U.
        • Blanchard P.
        • Gunther J.R.
        • Mahajan A.
        • et al.
        Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma.
        Radiother Oncol. 2016; 121: 395-401https://doi.org/10.1016/j.radonc.2016.11.001
        • Giantsoudi D.
        • Sethi R.V.
        • Yeap B.Y.
        • Eaton B.R.
        • Ebb D.H.
        • Caruso P.A.
        • et al.
        Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury.
        Int J Radiat Oncol Biol Phys. 2016; 95: 287-296https://doi.org/10.1016/j.ijrobp.2015.09.015
        • Fossum C.C.
        • Beltran C.J.
        • Whitaker T.J.
        • Ma D.J.
        • Foote R.L.
        Biological model for predicting toxicity in head and neck cancer patients receiving proton therapy.
        Int J Particle Ther. 2017; 4: 18-25https://doi.org/10.14338/ijpt-17-00015
        • Roberts K.W.
        • Wan Chan Tseung H.S.
        • Eckel L.J.
        • Harmsen W.S.
        • Beltran C.
        • Laack N.N.
        Biologic dose and imaging changes in pediatric brain tumor patients receiving spot scanning proton therapy.
        Int J Radiat Oncol Biol Phys. 2019; 105: 664-673https://doi.org/10.1016/j.ijrobp.2019.06.2534
        • Eulitz J.
        • Troost E.G.C.
        • Raschke F.
        • Schulz E.
        • Lutz B.
        • Dutz A.
        • et al.
        Predicting late magnetic resonance image changes in glioma patients after proton therapy.
        Acta Oncol. 2019; 58: 1536-1539https://doi.org/10.1080/0284186X.2019.1631477
        • Bolsi A.
        • Placidi L.
        • Pica A.
        • Ahlhelm F.J.
        • Walser M.
        • Lomax A.J.
        • et al.
        Pencil beam scanning proton therapy for the treatment of craniopharyngioma complicated with radiation-induced cerebral vasculopathies: a dosimetric and linear energy transfer (LET) evaluation.
        Radiother Oncol. 2020; 149: 197-204https://doi.org/10.1016/j.radonc.2020.04.052
        • Ödén J.
        • Toma-Dasu I.
        • Witt Nyström P.
        • Traneus E.
        • Dasu A.
        Spatial correlation of linear energy transfer and relative biological effectiveness with suspected treatment-related toxicities following proton therapy for intracranial tumors.
        Med Phys. 2020; 47: 342-351https://doi.org/10.1002/mp.13911
        • Wang C.C.
        • McNamara A.L.
        • Shin J.
        • Schuemann J.
        • Grassberger C.
        • Taghian A.G.
        • et al.
        End-of-range radiobiological effect on rib fractures in patients receiving proton therapy for breast cancer.
        Int J Radiat Oncol Biol Phys. 2020; 107: 449-454https://doi.org/10.1016/j.ijrobp.2020.03.012
        • Bahn E.
        • Bauer J.
        • Harrabi S.
        • Herfarth K.
        • Debus J.
        • Alber M.
        Late contrast enhancing brain lesions in proton-treated patients with low-grade glioma: clinical evidence for increased periventricular sensitivity and variable RBE.
        Int J Radiat Oncol Biol Phys. 2020; 107: 571-578https://doi.org/10.1016/j.ijrobp.2020.03.013
        • Niemierko A.
        • Schuemann J.
        • Niyazi M.
        • Giantsoudi D.
        • Maquilan G.
        • Shih H.A.
        • et al.
        Brain necrosis in adult patients after proton therapy: is there evidence for dependency on linear energy transfer?.
        Int J Radiat Oncol Biol Phys. 2021; 109: 109-119https://doi.org/10.1016/j.ijrobp.2020.08.058
        • Yang Y.
        • Vargas C.E.
        • Bhangoo R.S.
        • Wong W.W.
        • Schild S.E.
        • Daniels T.B.
        • et al.
        Exploratory investigation of dose-linear energy transfer (LET) volume histogram (DLVH) for adverse events study in intensity modulated proton therapy (IMPT).
        Int J Radiat Oncol Biol Phys. 2021; : 1-11https://doi.org/10.1016/j.ijrobp.2021.02.024
        • Skaarup M.
        • Lundemann M.J.
        • Darkner S.
        • Jørgensen M.
        • Marner L.
        • Mirkovic D.
        • et al.
        A framework for voxel-based assessment of biological effect after proton radiotherapy in pediatric brain cancer patients using multi-modal imaging.
        Med Phys. 2021; https://doi.org/10.1002/mp.14989
        • Bertolet A.
        • Abolfath R.
        • Carlson D.J.
        • Lustig R.A.
        • Hill-Kayser C.
        • Alonso-Basanta M.
        • et al.
        Correlation of LET with MRI changes in brain and potential implications for normal tissue complication probability for meningioma patients treated with pencil beam scanning proton therapy.
        Int J Radiat Oncol*Biol*Phys. 2021; https://doi.org/10.1016/j.ijrobp.2021.08.027
        • Gunther J.R.
        • Sato M.
        • Chintagumpala M.
        • Ketonen L.
        • Jones J.Y.
        • Allen P.K.
        • et al.
        Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy This work was presented previously at the 56th Annual American Society for Radiation Oncology Meetin.
        Int J Radiat Oncol Biol Phys. 2015; 93: 54-63https://doi.org/10.1016/j.ijrobp.2015.05.018
        • Acharya S.
        • Robinson C.G.
        • Michalski J.M.
        • Mullen D.
        • DeWees T.A.
        • Campian J.L.
        • et al.
        Association of 1p/19q codeletion and radiation necrosis in adult cranial gliomas after proton or photon therapy.
        Int J Radiat Oncol Biol Phys. 2018; 101: 334-343https://doi.org/10.1016/j.ijrobp.2018.01.099
        • Bronk J.K.
        • Guha-Thakurta N.
        • Allen P.K.
        • Mahajan A.
        • Grosshans D.R.
        • McGovern S.L.
        Analysis of pseudoprogression after proton or photon therapy of 99 patients with low grade and anaplastic glioma.
        Clin Trans Radiat Oncol. 2018; 9: 30-34https://doi.org/10.1016/j.ctro.2018.01.002
        • Underwood T.S.A.
        • Grassberger C.
        • Bass R.
        • MacDonald S.M.
        • Meyersohn N.M.
        • Yeap B.Y.
        • et al.
        Asymptomatic late-phase radiographic changes among chest-wall patients are associated with a proton RBE exceeding 1.1.
        Int J Radiat Oncol Biol Phys. 2018; 101: 809-819https://doi.org/10.1016/j.ijrobp.2018.03.037
        • Li Y.
        • Dykstra M.
        • Best T.D.
        • Pursley J.
        • Chopra N.
        • Keane F.K.
        • et al.
        Differential inflammatory response dynamics in normal lung following stereotactic body radiation therapy with protons versus photons.
        Radiother Oncol. 2019; 136: 169-175https://doi.org/10.1016/j.radonc.2019.04.004
        • Ludmir E.B.
        • Mahajan A.
        • Paulino A.C.
        • Jones J.Y.
        • Ketonen L.M.
        • Su J.M.
        • et al.
        Increased risk of pseudoprogression among pediatric low-grade glioma patients treated with proton versus photon radiotherapy.
        Neuro-Oncol. 2019; 21: 686-695https://doi.org/10.1093/neuonc/noz042
        • Song J.
        • Aljabab S.
        • Abduljabar L.
        • Tseng Y.
        • Rockhill J.
        • Fink J.
        • et al.
        Radiation-induced brain injury in meningioma patients treated with proton or photon therapy.
        Radiother Oncol. 2019; 139: S14https://doi.org/10.1016/s0167-8140(19)33311-0
        • Ritterbusch R.
        • Halasz L.M.
        • Graber J.J.
        Distinct imaging patterns of pseudoprogression in glioma patients following proton versus photon radiation therapy.
        J Neurooncol. 2021; 152: 583-590https://doi.org/10.1007/s11060-021-03734-6
        • Zhang Y.Y.
        • Huo W.L.
        • Goldberg S.I.
        • Slater J.M.
        • Adams J.A.
        • Deng X.-W.
        • et al.
        Brain-specific relative biological effectiveness of protons based on long-term outcome of patients with nasopharyngeal carcinoma.
        Int J Radiat Oncol*Biol*Phys. 2021; https://doi.org/10.1016/j.ijrobp.2021.02.018
        • Paganetti H.
        Mechanisms and review of clinical evidence for variations in relative biological effectiveness in proton therapy.
        Int J Radiat Oncol*Biol*Phys. 2021; https://doi.org/10.1016/j.ijrobp.2021.08.015
        • Wedenberg M.
        • Lind B.K.
        • Hårdemark B.
        A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes.
        Acta Oncol. 2013; 52: 580-588https://doi.org/10.3109/0284186X.2012.705892
        • McNamara A.L.
        • Schuemann J.
        • Paganetti H.
        A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data.
        Phys Med Biol. 2015; 60: 8399-8416https://doi.org/10.1088/0031-9155/60/21/8399
        • Kalholm F.
        • Grzanka L.
        • Traneus E.
        • Bassler N.
        A systematic review on the usage of averaged LET in radiation biology for particle therapy.
        Radiother Oncol. 2021; https://doi.org/10.1016/j.radonc.2021.04.007
        • Hahn C.
        • Ödén J.
        • Dasu A.
        • Vestergaard A.
        • Fuglsang Jensen M.
        • Sokol O.
        • et al.
        Towards harmonizing clinical linear energy transfer (LET) reporting in proton radiotherapy: a European multi-centric study.
        Acta Oncol. 2021; : 1-9https://doi.org/10.1080/0284186x.2021.1992007
        • Smith E.A.K.
        • Winterhalter C.
        • Underwood T.S.A.
        • Aitkenhead A.H.
        • Richardson J.C.
        • Merchant M.J.
        • et al.
        A Monte Carlo study of different LET definitions and calculation parameters for proton beam therapy.
        Biomed Phys Eng Express. 2021; 11: 5035-5040
        • Weber D.C.
        • Grau C.
        • Lim P.S.
        • Georg D.
        • Lievens Y.
        Bringing Europe together in building clinical evidence for proton therapy–the EPTN–ESTRO–EORTC endeavor.
        Acta Oncol. 2019; 58: 1340-1342https://doi.org/10.1080/0284186X.2019.1624820
        • Witzmann K.
        • Raschke F.
        • Troost E.G.C.
        Review mr image changes of normal-appearing brain tissue after radiotherapy.
        Cancers (Basel). 2021; 13: 1-27https://doi.org/10.3390/cancers13071573
        • Shusharina N.
        • Liao Z.
        • Mohan R.
        • Liu A.
        • Niemierko A.
        • Choi N.
        • et al.
        Differences in lung injury after IMRT or proton therapy assessed by 18FDG PET imaging.
        Radiother Oncol. 2018; 128: 147-153https://doi.org/10.1016/j.radonc.2017.12.027
        • Gueulette J.
        • Böhm L.
        • de Coster B.M.
        • Vynckier S.
        • Octave-Prignot M.
        • Schreuder A.N.
        • et al.
        RBE variation as a function of depth in the 200-MeV proton beam produced at the National Accelerator Centre in Faure (South Africa).
        Radiother Oncol. 1997; 42: 303-309https://doi.org/10.1016/S0167-8140(97)01919-1
        • Saager M.
        • Peschke P.
        • Brons S.
        • Debus J.
        • Karger C.P.
        Determination of the proton RBE in the rat spinal cord: Is there an increase towards the end of the spread-out Bragg peak?.
        Radiother Oncol. 2018; 128: 115-120https://doi.org/10.1016/j.radonc.2018.03.002
        • Suckert T.
        • Müller J.
        • Beyreuther E.
        • Azadegan B.
        • Brüggemann A.
        • Bütof R.
        • et al.
        High-precision image-guided proton irradiation of mouse brain sub-volumes.
        Radiother Oncol. 2020; 146: 205-212https://doi.org/10.1016/j.radonc.2020.02.023
        • Suckert T.
        • Beyreuther E.
        • Müller J.
        • Azadegan B.
        • Meinhardt M.
        • Raschke F.
        • et al.
        Late side effects in normal mouse brain tissue after proton irradiation.
        Front Oncol. 2021; 10: 1-17https://doi.org/10.3389/fonc.2020.598360
        • Bauer J.
        • Bahn E.
        • Harrabi S.
        • Herfarth K.
        • Debus J.
        • Alber M.
        How can scanned proton beam treatment planning for low-grade glioma cope with increased distal RBE and locally increased radiosensitivity for late MR-detected brain lesions?.
        Med Phys. 2021; 48: 1497-1508https://doi.org/10.1002/mp.14739
        • Eulitz J.
        • Lutz B.
        • Wohlfahrt P.
        • Dutz A.
        • Enghardt W.
        • Karpowitz C.
        • et al.
        A Monte Carlo based radiation response modelling framework to assess variability of clinical RBE in proton therapy.
        Phys Med Biol. 2019; 64https://doi.org/10.1088/1361-6560/ab3841
        • Lu V.M.
        • Welby J.P.
        • Laack N.N.
        • Mahajan A.
        • Daniels D.J.
        Pseudoprogression after radiation therapies for low grade glioma in children and adults: a systematic review and meta-analysis.
        Radiother Oncol. 2020; 142: 36-42https://doi.org/10.1016/j.radonc.2019.07.013
        • Mahajan A.
        • Stavinoha P.L.
        • Rongthong W.
        • Brodin N.P.
        • McGovern S.L.
        • el Naqa I.
        • et al.
        neurocognitive effects and necrosis in childhood cancer survivors treated with radiation therapy.
        A PENTEC Comp Rev Int J Radiat Oncol*Biol*Phys. 2021; https://doi.org/10.1016/j.ijrobp.2020.11.073