Advertisement

Organs at risk dose constraints in carbon ion radiotherapy at MedAustron: Translations between LEM and MKM RBE models and preliminary clinical results

      Highlights

      • Translation between European and Japanese RBE modelling for constraint validation.
      • Potential pitfalls for constraint definition in carbon ion radiotherapy of CNS.
      • RBE model translation trend outliers and their association with clinical toxicities.
      • Decision making process based on two RBE models, triggered by CNS toxicities.

      Abstract

      Background

      Carbon ion radiotherapy (CIRT) treatment planning is based on relative biological effectiveness (RBE) weighted dose calculations. A large amount of clinical evidence for CIRT was collected in Japan with RBE estimated by the modified microdosimetric kinetic model (MKM) while all European centres apply the first version of the local effect model (LEM). Japanese schedules have been used in Europe with adapted prescription dose and organs at risk (OAR) dose constraints. Recently, less conservative adapted LEM constraints have been implemented in clinical practice. The aim of this study was to analyse the new set of LEM dose constraints for brain parenchyma, brainstem and optic system considering both RBE models and evaluating early clinical data.

      Material and Methods

      31 patients receiving CIRT at MedAustron were analysed using the RayStation v9A planning system by recalculating clinical LEM-based plans in MKM. Dose statistics (D1cm3, D5cm3, D0.1cm3, D0.7cm3, D10%, D20%) were extracted for relevant critical OARs. Curve fitting for those values was performed, resulting in linear quadratic translation models. Clinical and radiological toxicity was evaluated.

      Results

      Based on derived fits, currently applied LEM constraints matched recommended MKM constraints with deviations between −8% and +3.9%. For particular cases, data did not follow the expected LEM vs MKM trends resulting in outliers. Radiological (asymptomatic) toxicity was detected in two outlier cases.

      Conclusion

      Respecting LEM constraints does not automatically ensure that MKM constraints are met. Constraints for both RBE models need to be fulfilled for future CIRT patients at MedAustron. Careful selection of planning strategies is essential.

      Keywords

      Abbreviations:

      CIRT (Carbon Ion Radiotherapy), RBE (Relative Biological Effectiveness), MKM (Microdosimetric Kinetic Model), LEM (Local Effect Model), H&N (Head and Neck), OAR (Organ At Risk), PTV (Planning Target Volume), GTV (Gross Tumour Volume), DIR (Deformable Image Registration), CNS (Central Nervous System), CI (Confidence Interval), SOBP (Spread-Out Bragg Peak)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Karger C.P.
        • Peschke P.
        RBE and related modelling in carbon-ion therapy.
        Phys Med Biol. 2018; 63: 01TR02https://doi.org/10.1088/1361-6560/aa9102
        • Kanai T.
        • Furusawa Y.
        • Fukutsu K.
        • Itsukaichi H.
        • Eguchi-Kasai K.
        • Ohara H.
        Irradiation of Mixed Beam and Design of Spread-Out Bragg Peak for Heavy-Ion Radiotherapy.
        Radiat Res. 1997; 147: 78-95
        • Kanai T.
        • Endo M.
        • Minohara S.
        • Miyahara N.
        • Koyama-Ito H.
        • Tomura H.
        • et al.
        Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.
        Int J Radiat Oncol Biol Phys. 1999; 44: 201-210
        • Hawkins R.
        A Statistical Theory of Cell Killing by Radiation of Varying Linear Energy Transfer.
        Radiat Res. 1994; 140: 366-374
        • Hawkins R.
        A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET.
        Med Phys. 1998; 25: 1157-1170https://doi.org/10.1118/1.598307
        • Hawkins R.
        A Microdosimetric-Kinetic Model for the Effect of Non-Poisson Distribution of Lethal Lesions on the Variation of RBE with LET.
        Radiat Res. 2003; 160: 61-69https://doi.org/10.1667/rr3010
        • Inaniwa T.
        • Furukawa T.
        • Kase Y.
        • Matsufuji N.
        • Toshito T.
        • Matsumoto Y.
        • et al.
        Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model.
        Phys Med Biol. 2010; 55: 6721-6737https://doi.org/10.1088/0031-9155/55/22/008
        • Scholz M.
        • Kraft G.
        Track structure and the calculation of biological effects of heavy charged particles.
        Adv Sp Res. 1996; 18: 5-14
        • Scholz M.
        • Kellerer A.M.
        • Kraft-Weyrather W.
        • Kraft G.
        Computation of cell survival in heavy ion beams for therapy.
        Radiat Env Biophys. 1997; 36: 59-66
        • Molinelli S.
        • Magro G.
        • Mairani A.
        • Matsufuji N.
        • Kanematsu N.
        • Inaniwa T.
        Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems.
        Radiother Oncol. 2016; 120: 307-312
        • Steinsträter O.
        • Grün R.
        • Scholz U.
        • Friedrich T.
        • Durante M.
        • Scholz M.
        Mapping of RBE-Weighted Doses Between HIMAC- and LEM-Based Treatment Planning Systems for Carbon Ion Therapy.
        Int J Radiat Oncol Biol Phys. 2012; 84: 854-860https://doi.org/10.1016/j.ijrobp.2012.01.038
        • Fossati P.
        • Molinelli S.
        • Matsufuji N.
        • Ciocca M.
        • Mirandola A.
        • Mairani A.
        • et al.
        Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy.
        Phys Med Biol. 2012; 57: 7543-7554https://doi.org/10.1088/0031-9155/57/22/7543
        • Dale J.E.
        • Molinelli S.
        • Vitolo V.
        • Vischioni B.
        • Bonora M.
        • Magro G.
        • et al.
        Optic nerve constraints for carbon ion RT at CNAO – Reporting and relating outcome to European and Japanese RBE.
        Radiother Oncol. 2019; 140: 175-181
        • Dale J.E.
        • Molinelli S.
        • Vischioni B.
        • Vitolo V.
        • Bonora M.
        • Magro G.
        • et al.
        Brainstem NTCP and Dose Constraints for Carbon Ion RT—Application and Translation From Japanese to European RBE-Weighted Dose. Front.
        Oncol. 2020; 50https://doi.org/10.3389/fonc.2020.531344
        • Choi K.
        • Molinelli S.
        • Russo S.
        • Mirandola A.
        • Fiore M.R.
        • Vischioni B.
        • et al.
        Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes.
        Cancers (Basel). 2020; 12https://doi.org/10.3390/cancers12010046
        • Zhang L.
        • Wang W.
        • Hu J.
        • Lu J.
        • Kong L.
        RBE-weighted dose conversions for patients with recurrent nasopharyngeal carcinoma receiving carbon-ion radiotherapy from the local effect model to the microdosimetric kinetic model.
        Radiat Oncol. 2020; 15: 277https://doi.org/10.1186/s13014-020-01723-z
        • Wang W.
        • Huang Z.
        • Sheng Y.
        • Zhao J.
        • Shahnazi K.
        • Zhang Q.
        • et al.
        RBE-weighted dose conversions for carbon ionradiotherapy between microdosimetric kinetic model and local effect model for the targets and organs at risk in prostate carcinoma.
        Radiother Oncol. 2020; 144: 30-36https://doi.org/10.1016/j.radonc.2019.10.005
        • Molinelli S.
        • Bonora M.
        • Magro G.
        • Casale S.
        • Dale J.E.
        • Fossati P.
        • et al.
        RBE-weighted dose in carbon ion therapy for ACC patients: Impact of the RBE model translation on treatment outcomes.
        Radiother Oncol. 2019; : 227-233https://doi.org/10.1016/j.radonc.2019.08.022
        • Fossati P.
        • Perpar A.
        • Stock M.
        • Georg P.
        • Carlino Antonio C.
        • Gora J.
        • et al.
        Carbon Ion Dose Constraints in the Head and Neck and Skull Base: Review of MedAustron Institutional Protocols.
        Int J Part Ther. 2021; 8: 25-35
        • Stock M.
        • Georg P.
        • Mayer R.
        • Böhlen T.T.
        • Vatnitsky S.
        Development of clinical programs for carbon ion beam therapy at Medaustron.
        Int J Part Ther. 2016; 2: 474-477
        • Grün R.
        • Friedrich T.
        • Elsässer T.
        • Krämer M.
        • Zink K.
        • Karger C.P.
        • et al.
        Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy.
        Phys Med Biol. 2012; 57: 7261-7274https://doi.org/10.1088/0031-9155/57/22/7261
        • Inaniwa T.
        • Kanematsu N.
        • Matsufuji N.
        • Kanai T.
        • Shirai T.
        • Noda K.
        • et al.
        Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences.
        Japan Phys Med Biol. 2015; 60: 3271-3286https://doi.org/10.1088/0031-9155/60/8/3271
        • Weistrand O.
        • Svensson S.
        The ANACONDA algorithm for deformable image registration in radiotherapy.
        Med Phys. 2015; 42: 40-53https://doi.org/10.1118/1.4894702
        • Koto M.
        • Hasegawa A.
        • Takagi R.
        • Fujikawa A.
        • Morikawa T.
        • Kishimoto R.
        • et al.
        Risk factors for brain injury after carbon ion radiotherapy for skull base tumors.
        Radiother Oncol. 2013; 111: 25-29https://doi.org/10.1016/j.radonc.2013.11.005
        • Shirai K.
        • Fukata K.
        • Adachi A.
        • Saitoh J.
        • Musha A.
        • Abe T.
        • et al.
        Dose-volume histogram analysis of brainstem necrosis in head and neck tumors treated using carbon-ion radiotherapy.
        Radiother Oncol. 2017; 125: 36-40https://doi.org/10.1016/j.radonc.2017.08.014
        • Hasegawa A.
        • Mizoe J.E.
        • Mizota A.
        • Tsujii H.
        Outcomes of visual acuity in carbon ion radiotherapy: analysis of dose-volume histograms and prognostic factors.
        Int J Radiation Oncology Biol Phys. 2006; 64: 396-401https://doi.org/10.1016/j.ijrobp.2005.07.298
        • Elsässer T.
        • Krämer M.
        • Scholz M.
        Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo.
        Int J Radiat Oncol Biol Phys. 2008; 71: 866-872https://doi.org/10.1016/j.ijrobp.2008.02.037