Advertisement

Combining FLASH and spatially fractionated radiation therapy: The best of both worlds

  • Author Footnotes
    1 Equally contributed.
    Tim Schneider
    Footnotes
    1 Equally contributed.
    Affiliations
    Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France

    Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
    Search for articles by this author
  • Author Footnotes
    1 Equally contributed.
    Cristian Fernandez-Palomo
    Footnotes
    1 Equally contributed.
    Affiliations
    Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
    Search for articles by this author
  • Annaïg Bertho
    Affiliations
    Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France

    Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
    Search for articles by this author
  • Jennifer Fazzari
    Affiliations
    Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
    Search for articles by this author
  • Lorea Iturri
    Affiliations
    Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France

    Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
    Search for articles by this author
  • Olga A. Martin
    Affiliations
    Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland

    Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia

    University of Melbourne, Parkville, VIC 3010, Australia
    Search for articles by this author
  • Verdiana Trappetti
    Affiliations
    Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
    Search for articles by this author
  • Valentin Djonov
    Affiliations
    Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
    Search for articles by this author
  • Yolanda Prezado
    Correspondence
    Corresponding author at: Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
    Affiliations
    Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France

    Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
    Search for articles by this author
  • Author Footnotes
    1 Equally contributed.

      Highlights

      • Advantages and current limitations of FLASH and spatially fractionated radiotherapy (SFRT).
      • Similarities and differences between FLASH and SFRT.
      • Devices for simultaneous application of FLASH and SFRT: current status and perspectives.

      Abstract

      FLASH radiotherapy (FLASH-RT) and spatially fractionated radiation therapy (SFRT) are two new therapeutical strategies that use non-standard dose delivery methods to reduce normal tissue toxicity and increase the therapeutic index. Although likely based on different mechanisms, both FLASH-RT and SFRT have shown to elicit radiobiological effects that significantly differ from those induced by conventional radiotherapy. With the therapeutic potential having been established separately for each technique, the combination of FLASH-RT and SFRT could therefore represent a winning alliance. In this review, we discuss the state of the art, advantages and current limitations, potential synergies, and where a combination of these two techniques could be implemented today or in the near future.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Borras J.M.
        • Lievens Y.
        • Barton M.
        • Corral J.
        • Ferlay J.
        • Bray F.
        • et al.
        How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis.
        Radiother Oncol. 2016; 119: 5-11
        • Bernier J.
        • Hall E.J.
        • Giaccia A.
        Radiation oncology: a century of achievements.
        Nat Rev Cancer. 2004; 4: 737-747
        • Abdel-Wahab M.
        • Gondhowiardjo S.S.
        • Rosa A.A.
        • Lievens Y.
        • El-Haj N.
        • Polo Rubio J.A.
        • et al.
        Global Radiotherapy: Current Status and Future Directions-White Paper.
        JCO Glob Oncol. 2021; 7: 827-842
        • Prezado Y.
        Divide and conquer: spatially fractionated radiation therapy.
        Expert Rev Mol Med. 2022; 24: 12
        • Mohiuddin M.
        • Fujita M.
        • Regine W.F.
        • Megooni A.S.
        • Ibbott G.S.
        • Ahmed M.M.
        High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers.
        Int J Radiat Oncol Biol Phys. 1999; 453: 721-727
        • Slatkin D.N.
        • Spanne P.
        • Dilmanian F.A.
        • Sandborg M.
        Microbeam radiation therapy.
        Med Phys. 1992; 19: 1395-1400
        • Dilmanian F.A.
        • Zhong Z.
        • Bacarian T.
        • Benveniste H.
        • Romanelli P.
        • Wang R.
        • et al.
        Interlaced x-ray microplanar beams: a radiosurgery approach with clinical potential.
        Proc Natl Acad Sci U S A. 2006; 103: 9709-9714
        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6: 245ra93
        • Yan W.
        • Khan M.K.
        • Wu X.
        • Simone C.B.
        • Fan J.
        • Gressen E.
        • et al.
        Spatially fractionated radiation therapy: History, present and the future.
        Clin Transl Radiat Oncol. 2020; 20: 30-38
        • De Marzi L.
        • Nauraye C.
        • Lansonneur P.
        • Pouzoulet F.
        • Patriarca A.
        • Schneider T.
        • et al.
        Spatial fractionation of the dose in proton therapy: Proton minibeam radiation therapy.
        Cancer Radiother. 2019; 23: 677-681
        • Amendola B.E.
        • Perez N.C.
        • Wu X.
        • Amendola M.A.
        • Qureshi I.Z.
        Safety and Efficacy of Lattice Radiotherapy in Voluminous Non-small Cell Lung Cancer.
        Cureus. 2019; 11: e4263
        • Billena C.
        • Khan A.J.
        A Current Review of Spatial Fractionation: Back to the Future?.
        Int J Radiat Oncol Biol Phys. 2019; 104: 177-187
        • Wu X.
        • Perez N.C.
        • Zheng Y.
        • Li X.
        • Jiang L.
        • Amendola B.E.
        • et al.
        The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT).
        Radiat Res. 2020; 194: 737-746
        • Fernandez-Palomo C.
        • Fazzari J.
        • Trappetti V.
        • Smyth L.
        • Janka H.
        • Laissue J.
        • et al.
        Erratum: Fernandez-Palomo, C., et al. Animal Models in Microbeam Radiation Therapy: A Scoping Review.
        Cancers (Basel). 2020; 12
        • Potez M.
        • Fernandez-Palomo C.
        • Bouchet A.
        • Trappetti V.
        • Donzelli M.
        • Krisch M.
        • et al.
        Synchrotron Microbeam Radiation Therapy as a New Approach for the Treatment of Radioresistant Melanoma: Potential Underlying Mechanisms.
        Int J Radiat Oncol Biol Phys. 2019; 105: 1126-1136
        • Dilmanian F.A.
        • Button T.M.
        • Le Duc G.
        • Zhong N.
        • Pena L.A.
        • Smith J.A.
        • et al.
        Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy.
        Neuro Oncol. 2002; 4: 26-38
        • Deman P.
        • Vautrin M.
        • Edouard M.
        • Stupar V.
        • Bobyk L.
        • Farion R.
        • et al.
        Monochromatic minibeams radiotherapy: from healthy tissue-sparing effect studies toward first experimental glioma bearing rats therapy.
        Int J Radiat Oncol Biol Phys. 2012; 82: e693-e700
        • Prezado Y.
        • Sarun S.
        • Gil S.
        • Deman P.
        • Bouchet A.
        • Le Duc G.
        Increase of lifespan for glioma-bearing rats by using minibeam radiation therapy.
        J Synchrotron Radiat. 2012; 19: 60-65
        • Bazyar S.
        • Inscoe C.R.
        • O'Brian E.T.
        • Zhou O.
        • Lee Y.Z.
        Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies.
        Phys Med Biol. 2017; 62: 8924-8942
        • Sotiropoulos M.
        • Brisebard E.
        • Le Dudal M.
        • Jouvion G.
        • Juchaux M.
        • Crepin D.
        • et al.
        X-rays minibeam radiation therapy at a conventional irradiator: Pilot evaluation in F98-glioma bearing rats and dose calculations in a human phantom.
        Clin Transl Radiat Oncol. 2021; 27: 44-49
        • Prezado Y.
        • Jouvion G.
        • Patriarca A.
        • Nauraye C.
        • Guardiola C.
        • Juchaux M.
        • et al.
        Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas.
        Sci Rep. 2018; 8: 16479
        • Prezado Y.
        • Jouvion G.
        • Guardiola C.
        • Gonzalez W.
        • Juchaux M.
        • Bergs J.
        • et al.
        Tumor Control in RG2 Glioma-Bearing Rats: A Comparison Between Proton Minibeam Therapy and Standard Proton Therapy.
        Int J Radiat Oncol Biol Phys. 2019; 104: 266-271
        • Wilson J.D.
        • Hammond E.M.
        • Higgins G.S.
        • Petersson K.
        Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?.
        Front Oncol. 2019; 9: 1563
        • Bourhis J.
        • Montay-Gruel P.
        • Gonçalves Jorge P.
        • Bailat C.
        • Petit B.
        • Ollivier J.
        • et al.
        Clinical translation of FLASH radiotherapy: Why and how?.
        Radiother Oncol. 2019; 139: 11-17
        • Griffin R.J.
        • Ahmed M.M.
        • Amendola B.
        • Belyakov O.
        • Bentzen S.M.
        • Butterworth K.T.
        • et al.
        Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy.
        Int J Radiat Oncol Biol Phys. 2020; 107: 766-778
        • Montay-Gruel P.
        • Petersson K.
        • Jaccard M.
        • Boivin G.
        • Germond J.F.
        • Petit B.
        • et al.
        Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s.
        Radiother Oncol. 2017; 124: 365-369
        • Montay-Gruel P.
        • Acharya M.M.
        • Petersson K.
        • Alikhani L.
        • Yakkala C.
        • Allen B.D.
        • et al.
        Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species.
        Proc Natl Acad Sci U S A. 2019; 116: 10943-10951
        • Montay-Gruel P.
        • Markarian M.
        • Allen B.D.
        • Baddour J.D.
        • Giedzinski E.
        • Jorge P.G.
        • et al.
        Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain.
        Radiat Res. 2020; 194: 636-645
        • Vozenin M.C.
        • Hendry J.H.
        • Limoli C.L.
        Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken.
        Clin Oncol (R Coll Radiol). 2019; 31: 407-415
        • Montay-Gruel P.
        • Acharya M.M.
        • Gonçalves Jorge P.
        • Petit B.
        • Petridis I.G.
        • Fuchs P.
        • et al.
        Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice.
        Clin Cancer Res. 2021; 27: 775-784
        • Vozenin M.C.
        • De Fornel P.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.F.
        • et al.
        The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients.
        Clin Cancer Res. 2019; 25: 35-42
        • Bourhis J.
        • Sozzi W.J.
        • Jorge P.G.
        • Gaide O.
        • Bailat C.
        • Duclos F.
        • et al.
        Treatment of a first patient with FLASH-radiotherapy.
        Radiother Oncol. 2019; 139: 18-22
        • Vozenin M.C.
        • Montay-Gruel P.
        • Limoli C.
        • Germond J.F.
        All Irradiations that are Ultra-High Dose Rate may not be FLASH: The Critical Importance of Beam Parameter Characterization and In Vivo Validation of the FLASH Effect.
        Radiat Res. 2020; 194: 571-572
        • Cunningham S.
        • McCauley S.
        • Vairamani K.
        • Speth J.
        • Girdhani S.
        • Abel E.
        • et al.
        FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice.
        Cancers (Basel). 2021; 13
        • Beyreuther E.
        • Brand M.
        • Hans S.
        • Hideghéty K.
        • Karsch L.
        • Leßmann E.
        • et al.
        Feasibility of proton FLASH effect tested by zebrafish embryo irradiation.
        Radiother Oncol. 2019; 139: 46-50
        • Smyth L.M.L.
        • Donoghue J.F.
        • Ventura J.A.
        • Livingstone J.
        • Bailey T.
        • Day L.R.J.
        • et al.
        Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model.
        Sci Rep. 2018; 8: 12044
        • Venkatesulu B.P.
        • Sharma A.
        • Pollard-Larkin J.M.
        • Sadagopan R.
        • Symons J.
        • Neri S.
        • et al.
        Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome.
        Sci Rep. 2019; 9: 17180
        • Lempart M.
        • Blad B.
        • Adrian G.
        • Bäck S.
        • Knöös T.
        • Ceberg C.
        • et al.
        Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation.
        Radiother Oncol. 2019; 139: 40-45
        • Patriarca A.
        • Fouillade C.
        • Auger M.
        • Martin F.
        • Pouzoulet F.
        • Nauraye C.
        • et al.
        Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System.
        Int J Radiat Oncol Biol Phys. 2018; 102: 619-626
        • Brauer-Krisch E.
        • Serduc R.
        • Siegbahn E.A.
        • Le Duc G.
        • Prezado Y.
        • Bravin A.
        • et al.
        Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.
        Mutat Res. 2010; 704: 160-166
        • Zeman W.
        • Curtis H.J.
        • Baker C.P.
        Histopathologic effect of high-energy-particle microbeams on the visual cortex of the mouse brain.
        Radiat Res. 1961; 15: 496-514
        • Manchado de Sola F.
        • Vilches M.
        • Prezado Y.
        • Lallena A.M.
        Impact of cardiosynchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and minibeam radiation therapy.
        Med Phys. 2018; 45: 3379-3390
        • Duncan M.
        • Donzelli M.
        • Pellicioli P.
        • Brauer-Krisch E.
        • Davis J.A.
        • Lerch M.L.F.
        • et al.
        First experimental measurement of the effect of cardio-synchronous brain motion on the dose distribution during microbeam radiation therapy.
        Med Phys. 2020; 47: 213-222
        • Cavallone M.
        • Prezado Y.
        • De Marzi L.
        Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept.
        Cancers (Basel). 2021; 14
        • Trappetti V.
        • Fazzari J.M.
        • Fernandez-Palomo C.
        • Scheidegger M.
        • Volarevic V.
        • Martin O.A.
        • et al.
        Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma.
        Int J Mol Sci. 2021; 22
        • Bazyar S.
        • O'Brien E.T.
        • Benefield T.
        • Roberts V.R.
        • Kumar R.J.
        • Gupta G.P.
        • et al.
        Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator.
        Cancers (Basel). 2021; 14
        • Bertho A.
        • Brisebard E.
        • Juchaux M.
        • Gilbert C.
        • Lamirault C.
        • Pouzoulet F.
        • et al.
        Anti-Tumor Immune Response and Long-Term Immunological Memory Induced by Minibeam Radiation Therapy: A Pilot Study.
        Int J Radiat Oncol Biol Phys. 2021; 111: S121-S122
        • Johnsrud A.J.
        • Jenkins S.V.
        • Jamshidi-Parsian A.
        • Quick C.M.
        • Galhardo E.P.
        • Dings R.P.M.
        • et al.
        Evidence for Early Stage Anti-Tumor Immunity Elicited by Spatially Fractionated Radiotherapy-Immunotherapy Combinations.
        Radiat Res. 2020; 194: 688-697
        • Kanagavelu S.
        • Gupta S.
        • Wu X.
        • Philip S.
        • Wattenberg M.M.
        • Hodge J.W.
        • et al.
        In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation.
        Radiat Res. 2014; 182: 149-162
        • Kim Y.E.
        • Gwak S.H.
        • Hong B.J.
        • Oh J.M.
        • Choi H.S.
        • Kim M.S.
        • et al.
        Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain.
        Int J Radiat Oncol Biol Phys. 2021; 109: 1440-1453
        • Eggold J.T.
        • Chow S.
        • Melemenidis S.
        • Wang J.
        • Natarajan S.
        • Loo P.E.
        • et al.
        Abdominopelvic FLASH Irradiation Improves PD-1 Immune Checkpoint Inhibition in Preclinical Models of Ovarian Cancer.
        Mol Cancer Ther. 2022; 21: 371-381
        • Simmons D.A.
        • Lartey F.M.
        • Schüler E.
        • Rafat M.
        • King G.
        • Kim A.
        • et al.
        Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation.
        Radiother Oncol. 2019; 139: 4-10
        • Jin J.Y.
        • Gu A.
        • Wang W.
        • Oleinick N.L.
        • Machtay M.
        • Spring Kong F.M.
        Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?.
        Radiother Oncol. 2020; 149: 55-62
        • Tinganelli W.
        • Sokol O.
        • Quartieri M.
        • Puspitasari A.
        • Dokic I.
        • Abdollahi A.
        • et al.
        Ultra-High Dose Rate (FLASH) Carbon Ion Irradiation: Dosimetry and First Cell Experiments.
        Int J Radiat Oncol Biol Phys. 2022; 112: 1012-1022
        • Bouchet A.
        • Serduc R.
        • Laissue J.A.
        • Djonov V.
        Effects of microbeam radiation therapy on normal and tumoral blood vessels.
        Phys Med. 2015; 31: 634-641
        • Bouchet A.
        • Lemasson B.
        • Le Duc G.
        • Maisin C.
        • Bräuer-Krisch E.
        • Siegbahn E.A.
        • et al.
        Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks.
        Int J Radiat Oncol Biol Phys. 2010; 78: 1503-1512
        • Serduc R.
        • Vérant P.
        • Vial J.C.
        • Farion R.
        • Rocas L.
        • Rémy C.
        • et al.
        In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature.
        Int J Radiat Oncol Biol Phys. 2006; 64: 1519-1527
        • Serduc R.
        • Christen T.
        • Laissue J.
        • Farion R.
        • Bouchet A.
        • Sanden B.
        • et al.
        Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study.
        Phys Med Biol. 2008; 53: 3609-3622
        • Sabatasso S.
        • Laissue J.A.
        • Hlushchuk R.
        • Graber W.
        • Bravin A.
        • Brauer-Krisch E.
        • et al.
        Microbeam radiation-induced tissue damage depends on the stage of vascular maturation.
        Int J Radiat Oncol Biol Phys. 2011; 80: 1522-1532
        • Griffin R.J.
        • Koonce N.A.
        • Dings R.P.
        • Siegel E.
        • Moros E.G.
        • Bräuer-Krisch E.
        • et al.
        Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide.
        Radiat Res. 2012; 177: 804-812
        • Sathishkumar S.
        • Boyanovsky B.
        • Karakashian A.A.
        • Rozenova K.
        • Giltiay N.V.
        • Kudrimoti M.
        • et al.
        Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis.
        Cancer Biol Ther. 2005; 4: 979-986
        • Garcia-Barros M.
        • Paris F.
        • Cordon-Cardo C.
        • Lyden D.
        • Rafii S.
        • Haimovitz-Friedman A.
        • et al.
        Tumor response to radiotherapy regulated by endothelial cell apoptosis.
        Science. 2003; 300: 1155-1159
        • Allen B.D.
        • Acharya M.M.
        • Montay-Gruel P.
        • Jorge P.G.
        • Bailat C.
        • Petit B.
        • et al.
        Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation.
        Radiat Res. 2020; 194: 625-635
        • Boscolo D.
        • Scifoni E.
        • Durante M.
        • Krämer M.
        • Fuss M.C.
        May oxygen depletion explain the FLASH effect? A chemical track structure analysis.
        Radiother Oncol. 2021; 162: 68-75
        • Adrian G.
        • Konradsson E.
        • Lempart M.
        • Bäck S.
        • Ceberg C.
        • Petersson K.
        The FLASH effect depends on oxygen concentration.
        Br J Radiol. 2020; 93: 20190702
        • Cao X.
        • Zhang R.
        • Esipova T.V.
        • Allu S.R.
        • Ashraf R.
        • Rahman M.
        • et al.
        Quantification of Oxygen Depletion During FLASH Irradiation In Vitro and In Vivo.
        Int J Radiat Oncol Biol Phys. 2021; 111: 240-248
        • Pratx G.
        • Kapp D.S.
        Ultra-High-Dose-Rate FLASH Irradiation May Spare Hypoxic Stem Cell Niches in Normal Tissues.
        Int J Radiat Oncol Biol Phys. 2019; 105: 190-192
        • Dal Bello R.
        • Becher T.
        • Fuss M.
        • Kramer M.
        • Seco J.
        Proposal of a Chemical Mechanism for Mini-Beam and Micro-Beam Efficacy. Frontiers.
        Physics. 2020; 8
        • Azzam E.I.
        • Jay-Gerin J.P.
        • Pain D.
        Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury.
        Cancer Lett. 2012; 327: 48-60
        • Lobachevsky P.
        • Ivashkevich A.
        • Forrester H.B.
        • Stevenson A.W.
        • Hall C.J.
        • Sprung C.N.
        • et al.
        Assessment and Implications of Scattered Microbeam and Broadbeam Synchrotron Radiation for Bystander Effect Studies.
        Radiat Res. 2015; 184: 650-659
        • Lobachevsky P.
        • Forrester H.B.
        • Ivashkevich A.
        • Mason J.
        • Stevenson A.W.
        • Hall C.J.
        • et al.
        Synchrotron X-Ray Radiation-Induced Bystander Effect: An Impact of the Scattered Radiation, Distance From the Irradiated Site and p53 Cell Status.
        Front Oncol. 2021; 11: 685598
        • Pakniyat F.
        • Nedaie H.A.
        • Mozdarani H.
        • Mahmoudzadeh A.
        • Salimi M.
        • Griffin R.J.
        • et al.
        Enhanced response of radioresistant carcinoma cell line to heterogeneous dose distribution of grid; the role of high-dose bystander effect.
        Int J Radiat Biol. 2020; 96: 1585-1596
        • Asur R.S.
        • Sharma S.
        • Chang C.W.
        • Penagaricano J.
        • Kommuru I.M.
        • Moros E.G.
        • et al.
        Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells.
        Radiat Res. 2012; 177: 751-765
        • Asur R.
        • Butterworth K.T.
        • Penagaricano J.A.
        • Prise K.M.
        • Griffin R.J.
        High dose bystander effects in spatially fractionated radiation therapy.
        Cancer Lett. 2015; 356: 52-57
        • Forrester H.B.
        • Lobachevsky P.N.
        • Stevenson A.W.
        • Hall C.J.
        • Martin O.A.
        • Sprung C.N.
        Abscopal Gene Expression in Response to Synchrotron Radiation Indicates a Role for Immunological and DNA Damage Response Genes.
        Radiat Res. 2020; 194: 678-687
        • Ventura J.
        • Lobachevsky P.N.
        • Palazzolo J.S.
        • Forrester H.
        • Haynes N.M.
        • Ivashkevich A.
        • et al.
        Localized Synchrotron Irradiation of Mouse Skin Induces Persistent Systemic Genotoxic and Immune Responses.
        Cancer Res. 2017; 77: 6389-6399
        • Lobachevsky P.N.
        • Ventura J.
        • Giannakandropoulou L.
        • Forrester H.
        • Palazzolo J.S.
        • Haynes N.M.
        • et al.
        A Functional Immune System Is Required for the Systemic Genotoxic Effects of Localized Irradiation.
        Int J Radiat Oncol Biol Phys. 2019; 103: 1184-1193
        • Meyer J.
        • Eley J.
        • Schmid T.E.
        • Combs S.E.
        • Dendale R.
        • Prezado Y.
        Spatially fractionated proton minibeams.
        Br J Radiol. 2019; 92: 20180466
        • Jolly S.
        • Owen H.
        • Schippers M.
        • Welsch C.
        Technical challenges for FLASH proton therapy.
        Phys Med. 2020; 78: 71-82
        • Esplen N.
        • Mendonca M.S.
        • Bazalova-Carter M.
        Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review.
        Phys Med Biol. 2020; 65: 23TR03
        • Steel H.
        • Brüningk S.C.
        • Box C.
        • Oelfke U.
        • Bartzsch S.H.
        Quantification of Differential Response of Tumour and Normal Cells to Microbeam Radiation in the Absence of FLASH Effects.
        Cancers (Basel). 2021; 13
        • Bouchet A.
        • Brauer-Krisch E.
        • Prezado Y.
        • El Atifi M.
        • Rogalev L.
        • Le Clec'h C.
        • et al.
        Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma.
        Int J Radiat Oncol Biol Phys. 2016; 95: 1485-1494
        • Prezado Y.
        • Deman P.
        • Varlet P.
        • Jouvion G.
        • Gil S.
        • Le Clec'H C.
        • et al.
        Tolerance to Dose Escalation in Minibeam Radiation Therapy Applied to Normal Rat Brain: Long-Term Clinical, Radiological and Histopathological Analysis.
        Radiat Res. 2015; 184: 314-321
        • Wright M.D.
        • Romanelli P.
        • Bravin A.
        • Le Duc G.
        • Brauer-Krisch E.
        • Requardt H.
        • et al.
        Non-conventional Ultra-High Dose Rate (FLASH) Microbeam Radiotherapy Provides Superior Normal Tissue Sparing in Rat Lung Compared to Non-conventional Ultra-High Dose Rate (FLASH) Radiotherapy.
        Cureus. 2021; 13: e19317
        • Girst S.
        • Greubel C.
        • Reindl J.
        • Siebenwirth C.
        • Zlobinskaya O.
        • Walsh D.W.M.
        • et al.
        Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model.
        Int J Radiat Oncol Biol Phys. 2016; 95: 234-241
        • Bartzsch S.
        • Corde S.
        • Crosbie J.C.
        • Day L.
        • Donzelli M.
        • Krisch M.
        • et al.
        Technical advances in x-ray microbeam radiation therapy.
        Phys Med Biol. 2020; 65: 02TR1
        • Maxim P.G.
        • Keall P.
        • Cai J.
        FLASH radiotherapy: Newsflash or flash in the pan?.
        Med Phys. 2019; 46: 4287-4290
        • Prezado Y.
        • Thengumpallil S.
        • Renier M.
        • Bravin A.
        X-ray energy optimization in minibeam radiation therapy.
        Med Phys. 2009; 36: 4897-4902
        • Bartzsch S.
        • Oelfke U.
        Line focus x-ray tubes-a new concept to produce high brilliance x-rays.
        Phys Med Biol. 2017; 62: 8600-8615
        • Winter J.
        • Galek M.
        • Matejcek C.
        • Wilkens J.J.
        • Aulenbacher K.
        • Combs S.E.
        • et al.
        Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube.
        Phys Imaging Radiat Oncol. 2020; 14: 74-81
        • Diffenderfer E.S.
        • Verginadis I.I.
        • Kim M.M.
        • Shoniyozov K.
        • Velalopoulou A.
        • Goia D.
        • et al.
        Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System.
        Int J Radiat Oncol Biol Phys. 2020; 106: 440-448
        • Darafsheh A.
        • Hao Y.
        • Zhao X.
        • Zwart T.
        • Wagner M.
        • Evans T.
        • et al.
        Spread-out Bragg peak proton FLASH irradiation using a clinical synchrocyclotron: Proof of concept and ion chamber characterization.
        Med Phys. 2021; 48: 4472-4484
        • Mohiuddin M.
        • Lynch C.
        • Gao M.
        • Hartsell W.
        Early clinical results of proton spatially fractionated GRID radiation therapy (SFGRT).
        Br J Radiol. 2020; 93: 20190572
        • De Marzi L.
        • Patriarca A.
        • Nauraye C.
        • Hierso E.
        • Dendale R.
        • Guardiola C.
        • et al.
        Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study.
        Med Phys. 2018; 45: 5305-5316
        • Bertho A.
        • Ortiz R.
        • Juchaux M.
        • Gilbert C.
        • Lamirault C.
        • Pouzoulet F.
        • et al.
        First Evaluation of Temporal and Spatial Fractionation in Proton Minibeam Radiation Therapy of Glioma-Bearing Rats.
        Cancers (Basel). 2021; 13
        • Schneider T.
        • De Marzi L.
        • Patriarca A.
        • Prezado Y.
        Advancing proton minibeam radiation therapy: magnetically focussed proton minibeams at a clinical centre.
        Sci Rep. 2020; 10: 1384
        • Schneider T.
        • Patriarca A.
        • Degiovanni A.
        • Gallas M.
        • Prezado Y.
        Conceptual Design of a Novel Nozzle Combined with a Clinical Proton Linac for Magnetically Focussed Minibeams.
        Cancers (Basel). 2021; 13
        • Nesteruk K.P.
        • Togno M.
        • Grossmann M.
        • Lomax A.J.
        • Weber D.C.
        • Schippers J.M.
        • et al.
        Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH).
        Med Phys. 2021; 48: 4017-4026
        • Zlobinskaya O.
        • Girst S.
        • Greubel C.
        • Hable V.
        • Siebenwirth C.
        • Walsh D.W.
        • et al.
        Reduced side effects by proton microchannel radiotherapy: study in a human skin model.
        Radiat Environ Biophys. 2013; 52: 123-133
        • Reindl J.
        • Girst S.
        PMB FLASH - Status and Perspectives of Combining Proton Minibeam with FLASH Radiotherapy.
        J Cancer Immunol. 2019; 1: 6
        • Mayerhofer M.
        • Datzmann G.
        • Degiovanni A.
        • Dimov V.
        • Dollinger G.
        Magnetically focused 70 MeV proton minibeams for preclinical experiments combining a tandem accelerator and a 3 GHz linear post-accelerator.
        Med Phys. 2021; 48: 2733-2749
        • Degiovanni A.
        • Amaldi U.
        • Lomax A.J.
        • Schippers J.M.
        • Stingelin L.
        • Bilbao de Mendizabal J.
        Linac booster for high energy proton therapy and imaging.
        Phys Rev Accelerat Beams. 2019; : 7
        • Weber U.A.
        • Scifoni E.
        • Durante M.
        FLASH radiotherapy with carbon ion beams.
        Med Phys. 2022; 49: 1974-1992
        • Tessonnier T.
        • Mein S.
        • Walsh D.W.M.
        • Schuhmacher N.
        • Liew H.
        • Cee R.
        • et al.
        FLASH Dose Rate Helium Ion Beams: First In Vitro Investigations.
        Int J Radiat Oncol Biol Phys. 2021; 111: 1011-1022
        • Prezado Y.
        • Hirayama R.
        • Matsufuji N.
        • Inaniwa T.
        • Martinez-Rovira I.
        • Seksek O.
        • et al.
        A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy.
        Cancers (Basel). 2021; 13
        • Lansonneur P.
        • Favaudon V.
        • Heinrich S.
        • Fouillade C.
        • Verrelle P.
        • De Marzi L.
        Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies.
        Phys Med. 2019; 60: 50-57
        • Jaccard M.
        • Durán M.T.
        • Petersson K.
        • Germond J.F.
        • Liger P.
        • Vozenin M.C.
        • et al.
        High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.
        Med Phys. 2018; 45: 863-874
        • Schüler E.
        • Trovati S.
        • King G.
        • Lartey F.
        • Rafat M.
        • Villegas M.
        • et al.
        Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator.
        Int J Radiat Oncol Biol Phys. 2017; 97: 195-203
        • Meigooni A.S.
        • Parker S.A.
        • Zheng J.
        • Kalbaugh K.J.
        • Regine W.F.
        • Mohiuddin M.
        Dosimetric characteristics with spatial fractionation using electron grid therapy.
        Med Dosim. 2002; 27: 37-42
        • Tamura M.
        • Monzen H.
        • Kubo K.
        • Hirata M.
        • Nishimura Y.
        Feasibility of tungsten functional paper in electron grid therapy: a Monte Carlo study.
        Phys Med Biol. 2017; 62: 878-889
        • Martínez-Rovira I.
        • Fois G.
        • Prezado Y.
        Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources.
        Med Phys. 2015; 42: 685-693
        • Dos Santos M.
        • Delorme R.
        • Salmon R.
        • Prezado Y.
        Minibeam radiation therapy: A micro- and nano-dosimetry Monte Carlo study.
        Med Phys. 2020; 47: 1379-1390
        • Delorme R.
        • Masilela T.A.M.
        • Etoh C.
        • Smekens F.
        • Prezado Y.
        First theoretical determination of relative biological effectiveness of very high energy electrons.
        Sci Rep. 2021; 11: 11242
        • Böhlen T.T.
        • Germond J.F.
        • Traneus E.
        • Bourhis J.
        • Vozenin M.C.
        • Bailat C.
        • et al.
        Characteristics of very high-energy electron beams for the irradiation of deep-seated targets.
        Med Phys. 2021; 48: 3958-3967
        • Bazalova-Carter M.
        • Liu M.
        • Palma B.
        • Dunning M.
        • McCormick D.
        • Hemsing E.
        • et al.
        Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.
        Med Phys. 2015; 42: 1606-1613
        • Glinec Y.
        • Faure G.
        • Pukhov A.
        • Kiselev S.
        • Gordienko S.
        • Mercier B.
        • et al.
        Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses.
        Laser Particle Beams. 2005; 23: 6
        • Malka V.
        • Faure J.
        • Gauduel Y.A.
        • Lefebvre E.
        • Rousse A.
        • Ta P.K.
        Principles and applications of compact laser plasma accelerators.
        Nat Phys. 2008; 6: 6
        • Felici G.
        • Barca P.
        • Barone S.
        • Bortoli E.
        • Borgheresi R.
        • De Stefano S.
        • et al.
        Transforming an IORT Linac Into a FLASH Research Machine: Procedure and Dosimetric Characterization.
        Front Phys. 2020; 8
        • Moeckli R.
        • Gonçalves Jorge P.
        • Grilj V.
        • Oesterle R.
        • Cherbuin N.
        • Bourhis J.
        • et al.
        Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols.
        Med Phys. 2021; 48: 3134-3142
        • Rohrer Bley C.
        • Wolf F.
        • Gonçalves Jorge P.
        • Grilj V.
        • Petridis I.
        • Petit B.
        • et al.
        Dose and volume limiting late toxicity of FLASH radiotherapy in cats with squamous cell carcinoma of the nasal planum and in mini-pigs.
        Clin Cancer Res. 2022;
        • Hendry J.
        Taking Care with FLASH Radiation Therapy.
        Int J Radiat Oncol Biol Phys. 2020; 107: 239-242
        • Mayr N.A.
        • Snider J.W.
        • Regine W.F.
        • Mohiuddin M.
        • Hippe D.S.
        • Penagaricano J.
        • et al.
        An International Consensus on the Design of Prospective Clinical-Translational Trials in Spatially Fractionated Radiation Therapy.
        Adv Radiat Oncol. 2022; 7: 100866
        • Coleman C.N.
        • Ahmed M.M.
        Implementation of New Biology-Based Radiation Therapy Technology: When Is It Ready So “Perfect Makes Practice?”.
        Int J Radiat Oncol Biol Phys. 2019; 105: 934-937
        • Buchsbaum J.C.
        • Coleman C.N.
        • Espey M.G.
        • Prasanna P.G.S.
        • Capala J.
        • Ahmed M.M.
        • et al.
        FLASH Radiation Therapy: New Technology Plus Biology Required.
        Int J Radiat Oncol Biol Phys. 2021; 110: 1248-1249