Advertisement

Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques

      Highlights

      • The single-energy Bragg planning can have IMPT-equivalent plan quality for lung cancers.
      • Both dose rate and dose thresholds were applied to evaluate the "FLASHness" for OARs..
      • Single-field in a multiple-field scheme for a hypofractionation regimen also can reach FLASH constraints.
      • Pristine or single-energy Bragg peak IMPT can deliver highly conformal FLASH radiotherapy.

      Abstract

      Purpose

      To investigate the dosimetric characteristics between an advanced proton pencil beam scanning (PBS) Bragg peak FLASH technique and conventional PBS planning technique in lung tumors. To evaluate the “FLASHness” of single-field in a multiple-field delivery scheme for a hypofractionation regimen and move a step forward to clinical application.

      Methods

      Single-energy PBS Bragg peak FLASH treatment plans were optimized based on a novel Bragg peak tracking technique to enable Bragg peaks to stop at the distal edge of the target. Inverse treatment planning using multiple-field optimization (MFO) can achieve sufficient FLASH dose rate and intensity-modulated proton therapy (IMPT)-equivalent dosimetric quality. The dose rate of organs-at-risk (OARs) and the target were calculated under FLASH machine parameters. A group of 10 consecutive lung SBRT patients was optimized to 34 Gy/fraction using a standard treatment of PBS technique with multiple energy layers as references to the Bragg peak plans. The dosimetric quality was compared between Bragg peak FLASH and conventional plans based on RTOG0915 dose metrics. FLASH dose rate ratios (V40Gy/s) were calculated as a metric of the FLASH-sparing effect.

      Results

      For higher dose thresholds, the Bragg peak plans achieved greater V40Gy/s FLASH coverage for all major OARs. The V40Gy/s was close to 100% for all OARs when the dose thresholds were > 5 Gy for full plan and single beam evaluations. The less “FLASHness” region was associated with a low dose distribution, mainly occurring in the PBS field penumbra region. The conventional IMPT treatment plans yielded slightly superior target dose uniformity with a D2%(%) of 108.02% versus that of Bragg peak 300 MU plans of 111.81% (p < 0.01) and that of Bragg peak 1200 MU plans of 115.95% (p < 0.01). No significant difference in dose metrics was found between Bragg peak and IMPT treatment plans for the spinal cord, esophagus, heart, or lung-GTV (all p > 0.05).

      Conclusion

      Hypofractionated lung Bragg peak plans can maintain comparable plan quality to conventional PBS while achieving sufficient FLASH dose rate coverage for major OARs for each field under the multiple-field delivery scheme. The novel Bragg peak FLASH technique has the potential to enhance lung cancer planning treatment outcomes compared to standard PBS treatment techniques.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. The American Cancer Society report: https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html.

        • Simone 2nd, C.B.
        • Ramesh R.
        The Use of Proton Therapy in the Treatment of Lung Cancers.
        Cancer J. 2014; 20: 427-432https://doi.org/10.1097/PPO.0000000000000080
        • Vyfhuis M.A.L.
        • Onyeuku N.
        • Diwanji T.
        • et al.
        Advances in proton therapy in lung cancer.
        Ther Adv Respir Dis. 2018; 12 (1753466618783878)
        • Rwigema J.M.
        • Verma V.
        • Lin L.
        • et al.
        Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer.
        Cancer. 2017; 123: 4244-4251
        • Lin L.
        • Kang M.
        • Huang S.
        • et al.
        Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors.
        J Appl Clin Med Phys. 2015; 16: 5678
        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6: 245ra93https://doi.org/10.1126/scitranslmed.3008973
        • Fouillade C.
        • Curras-Alonso S.
        • Giuranno L.
        • et al.
        FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence.
        Clin Cancer Res. 2020; 26: 1497-1506
        • Gao F.
        • Yang Y.
        • Zhu H.
        • et al.
        First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays.
        Radiother Oncol. 2022 Jan; 166: 44-50https://doi.org/10.1016/j.radonc.2021.11.004
        • Montay-Gruel P.
        • Petersson K.
        • Jaccard M.
        • Boivin G.
        • Germond J.F.
        • Petit B.
        • et al.
        Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s.
        Radiother Oncol. 2017; 124: 365-369https://doi.org/10.1016/j.radonc.2017.05.003
        • Montay-Gruel P.
        • Bouchet A.
        • Jaccard M.
        • Patin D.
        • Serduc R.
        • Aim W.
        • et al.
        X-rays can trigger the FLASH effect: Ultrahigh dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice.
        Radiother Oncol. 2018; 129: 582-588https://doi.org/10.1016/j.radonc.2018.08.016
        • Simmons D.A.
        • Lartey F.M.
        • Schüler E.
        • Rafat M.
        • King G.
        • Kim A.
        • et al.
        Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation.
        Radiother Oncol. 2019; 139: 4-10https://doi.org/10.1016/j.radonc.2019.06.006
        • Beyreuther E.
        • Brand M.
        • Hans S.
        • Hideghéty K.
        • Karsch L.
        • Leßmann E.
        • et al.
        feasibility of proton FLASH effect tested by zebrafish embryo irradiation.
        Radiother Oncol. 2019; 139: 46-50https://doi.org/10.1016/j.radonc.2019.06.024
        • Vozenin M.C.
        • Fornel P.D.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.F.
        • et al.
        The Advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients.
        Clin Cancer Res. 2019; 25: 35-42https://doi.org/10.1158/1078-0432.CCR-17-3375
        • Levy K.
        • Natarajan S.
        • Wang J.
        • et al.
        Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice.
        Sci Rep. 2020; 10 (Published 2020 Dec 10): 21600https://doi.org/10.1038/s41598-020-78017-7
        • Chabi S.
        • Van To T.H.
        • Leavitt R.
        • et al.
        Ultra-high dose rate FLASH and conventional dose rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis.
        Int J Radiat Oncol Biol Phys. 2021; 109: 819-829
        • Bourhis J.
        • Sozzi W.J.
        • Jorge P.G.
        • Gaide O.
        • Bailat C.
        • Duclos F.
        • et al.
        Treatment of a first patient with FLASH-radiotherapy.
        Radiother Oncol. 2019; 139: 18-22https://doi.org/10.1016/j.radonc.2019.06.019
        • Patriarca A.
        • Fouillade C.
        • Auger M.
        • Martin F.
        • Pouzoulet F.
        • Nauraye C.
        • et al.
        Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System.
        Int J Radiat Oncol Biol Phys. 2018; 102: 619-626https://doi.org/10.1016/j.ijrobp.2018.06.403
        • Diffenderfer E.S.
        • Verginadis I.I.
        • Kim M.
        • Shoniyozov K.
        • Velalopoulou A.
        • Goia D.
        • et al.
        Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system.
        Int J Radiation Oncol Biol Phys. 2020; 106: 440e448https://doi.org/10.1016/j.ijrobp.2019.10.049
        • Rahman M.
        • Ashraf M.R.
        • Zhang R.
        • et al.
        Electron FLASH delivery at treatment room isocenter for efficient reversible conversion of a clinical LINAC.
        Int J Radiat Oncol Biol Phys. 2021; 110: 872-882https://doi.org/10.1016/j.ijrobp.2021.01.011
        • Rezaee M.
        • Iordachita L.
        • Wong J.
        Ultrahigh dose-rate (FLASH) x-ray irradiator for preclinical laboratory research.
        Phys Med Biol. 2021; 66: 095006
        • Moeckli R.
        • Gonçalves Jorge P.
        • Grilj V.
        • et al.
        Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH-RT preclinical animal experiments and future clinical human protocols.
        Med Phys. 2021; 48: 3134-3142https://doi.org/10.1002/mp.14885
        • Nesteruk K.P.
        • Togno M.
        • Grossmann M.
        • Lomax A.J.
        • Weber D.C.
        • Schippers J.M.
        • et al.
        Commissioning of a clinical pencil beam scanning proton therapy unit for ultrahigh dose rates (FLASH).
        Med Phys. 2021; 48: 4017-4026https://doi.org/10.1002/mp.14933
        • Pratx G.
        • Kapp D.S.
        A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio.
        Phys Med Biol. 2019; 64: 185005https://doi.org/10.1088/1361-6560/ab3769
        • Petersson K.
        • Adrian G.
        • Butterworth K.
        • McMahon S.J.
        A quantitative analysis of the role of oxygen tension in FLASH radiotherapy.
        Int J Radiat Oncol Biol Phys. 2020; 107: 539-547https://doi.org/10.1016/j.ijrobp.2020.02.634
        • Rothwell B.C.
        • Kirkby N.F.
        • Merchant M.J.
        • Chadwick A.L.
        • Lowe M.
        • Mackay R.I.
        • et al.
        Determining the parameter space for effective oxygen depletion for FLASH radiation therapy.
        Phys Med Biol. 2021; 66https://doi.org/10.1088/1361-6560/abe2ea
        • Jin J.Y.
        • Gu A.
        • Wang W.
        • Oleinick N.L.
        • Machtay M.
        • Kong F.M.
        Ultra-high dose rate effect on circulating immune cells: A potential mechanism for flash effect?.
        Radiother Oncol. 2020; 149: 55-62https://doi.org/10.1016/j.radonc.2020.04.054
        • Labarbe R.
        • Hotoiu L.
        • Barbier J.
        • Vincent F.
        A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect.
        Radiother Oncol. 2020; 153: 303-310https://doi.org/10.1016/j.radonc.2020.06.001
        • van de Water S.
        • Safai S.
        • Schippers J.M.
        • Weber D.C.
        • Lomax A.J.
        Towards FLASH Proton Therapy: The Impact of Treatment Planning and Machine Characteristics on Achievable Dose Rates.
        Acta Oncol. 2019; 58: 1463-1469https://doi.org/10.1080/0284186X.2019.1627416
        • van Marlen P.
        • Dahele M.
        • Folkerts M.
        • Abel E.
        • Slotman B.J.
        • Verbakel W.
        Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions.
        Cancers. 2021; 13: 1859https://doi.org/10.3390/cancers13081859
        • Wei S.
        • Lin H.
        • Choi J.
        • Simone 2nd, C.B.
        • Kang M.
        A novel proton pencil-beam scanning FLASH-RT delivery method enables optimal OAR sparing and ultrahigh dose rate: a systematic dosimetry study for lung tumor cases.
        Cancers. 2021;
        • Kang M.
        • Wei S.
        • Choi J.I.
        • Simone 2nd, C.B.
        • Lin H.
        Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning.
        Cancers. 2021; 13: 3549https://doi.org/10.3390/cancers13143549
        • Wei S.
        • Lin H.
        • Choi J.I.
        • Press R.H.
        • Lazarev S.
        • Kabarriti R.
        • et al.
        FLASH Radiotherapy Using Single-Energy Proton PBS Transmission Beams for Hypofractionation Liver Cancer: Dose and Dose Rate Quantification.
        Front Oncol. 2022 Jan; 13: 813063https://doi.org/10.3389/fonc.2021.813063
        • Gao H.
        • Lin B.
        • Lin Y.
        • Fu S.
        • Langen K.
        • Liu T.
        • et al.
        Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy.
        Med Phys. 2020; 47: 6388-6395
        • Verhaegen F.
        • Wanders R.-G.
        • A Wolfs C.J.
        • Eekers D.
        Considerations for shoot-through FLASH proton therapy.
        Phys Med Biol. 2021; 66: 06NT01
        • Zou W.
        • Diffenderfer E.S.
        • Ota K.
        • et al.
        Characterization of a highresolution 2D transmission ion chamber for independent validation of proton pencil beam scanning of conventional and FLASH dose delivery.
        Med Phys. 2021; 48: 3948-3957
        • Rahman M.
        • Ashraf M.R.
        • Zhang R.
        • Gladstone D.J.
        • Cao X.
        • Williams B.B.
        • et al.
        Spatial and temporal dosimetry of individual electron FLASH beam pulses using radioluminescence imaging.
        Phys Med Biol. 2021; 66https://doi.org/10.1088/1361-6560/ac0390
        • Chow R.
        • Kang M.
        • Wei S.
        • Choi J.I.
        • Press R.H.
        • Hasan S.
        • et al.
        FLASH Radiation Therapy: Review of the Literature and Considerations for Future Research and Proton Therapy FLASH Trials.
        Appl Radiat Oncol. 2021; 10: 16-21
        • Kesarwala A.H.
        • Ko C.J.
        • Ning H.
        • et al.
        Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer: a dosimetric study.
        Clin Lung Cancer. 2015; 16: 237-244
        • Kang M.
        • Wei S.
        • Choi J.I.
        • Lin H.
        • Simone 2nd, C.B.
        A Universal Range Shifter and Range Compensator Can Enable Proton Pencil Beam Scanning Single-Energy Bragg Peak FLASH-RT Treatment Using Current Commercially Available Proton Systems.
        Int J Radiat Oncol Biol Phys. 2022; (S0360-3016(22)00019-0)https://doi.org/10.1016/j.ijrobp.2022.01.009
        • MacKay R.
        • Burnet N.
        • Lowe M.
        • Rothwell B.
        • Kirkby N.
        • Kirkby K.
        • et al.
        FLASH radiotherapy: Considerations for multibeam and hypofractionation dose delivery.
        Radiother Oncol. 2021; 164: 122-127
        • Cunningham S.
        • McCauley S.
        • Vairamani K.
        • Speth J.
        • Girdhani S.
        • Abel E.
        • et al.
        FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice.
        Cancers (Basel). 2021 Mar 1; 13: 1012https://doi.org/10.3390/cancers13051012
        • Adrian G.
        • Konradsson E.
        • Lempart M.
        • Bäck S.
        • Ceberg C.
        • Petersson K.
        The FLASH effect depends on oxygen concentration.
        Br J Radiol. 2020; 93
        • Wilson P.
        • Jones B.
        • Yokoi T.
        • et al.
        Revisiting the ultrahigh dose rate effect: implications for charged particle radiotherapy using protons and light ions.
        Br J Radiol. 2012; 85: e933-e939
        • Krieger M.
        • van de Water S.
        • Folkerts M.M.
        • Mazal A.
        • Fabiano S.
        • Bizzocchi N.
        • et al.
        A quantitative FLASH effectiveness model to reveal potentials and pitfalls of high dose rate proton therapy.
        Med Phys. 2022 Mar; 49 (Epub 2022 Jan 27 PMID: 35032035): 2026-2038https://doi.org/10.1002/mp.15459
      2. RTOG0915. Available online: https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-0915?filter=rtog-0915.

        • Kang M.
        • Huang S.
        • Solberg T.D.
        • Mayer R.
        • Thomas A.
        • Teo B.K.
        • et al.
        A study of the beam-specific interplay effect in proton pencil beam scanning delivery in lung cancer.
        Acta Oncol. 2017 Apr; 56: 531-540
        • Wieser H.P.
        • Cisternas E.
        • Wahl N.
        • Ulrich S.
        • Stadler A.
        • Mescher H.
        • et al.
        Development of the Opensource Dose Calculation and Optimization Toolkit Matrad.
        Med Phys. 2017; 44: 2556-2568https://doi.org/10.1002/mp.12251
        • Folkerts M.
        • Abel E.
        • Busold S.
        • Perez J.
        • Krishnamurthi V.
        • Ling C.C.
        A framework for defining FLASH dose rate for pencil beam scanning.
        Med Phys. 2020; 47: 6396-6404
        • Bourhis J.
        • Montay-Gruel P.
        • Jorge P.G.
        • Bailat C.
        • Petit B.
        • Ollivier J.
        • et al.
        Clinical translation of FLASH radiotherapy: Why and how?.
        Radiother Oncol. 2019; 139: 11-17
      3. Sørensen B. What We Know, What We Don’t (Minimum Dose Threshold? Boundaries of Current Knowledge, Mechanisms). What the Data Tells Us. Joint AAPM-ESTRO Symposium: FLASH-From Experimental Beam Lines to the Clinic. AAPM 2022.

      4. Wei S, Lin H, Shi C, et al. A feasibility study using single-energy proton pencil-beam scanning Bragg peak for hypofractionated FLASH treatment planning in liver radiation therapy, under revision, 2022.

        • Keall P.J.
        • Mageras G.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM Task Group 76a.
        Med Phys. 2006; 33: 3874-3900
        • Chang J.Y.
        • Zhang X.
        • Knopf A.
        • Li H.
        • Mori S.
        • Dong L.
        • et al.
        Consensus Guidelines for Implementing Pencil-Beam Scanning Proton Therapy for Thoracic Malignancies on Behalf of the PTCOG Thoracic and Lymphoma Subcommittee.
        Int J Radiat Oncol. 2017; 99: 41-50
        • Molitoris J.K.
        • Diwanji T.
        • Snider 3rd, J.W.
        • et al.
        Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer.
        J Thorac Dis. 2018; 10: S2437-S2450
        • Bortfeld T.
        • Loeffler J.
        Three ways to make proton therapy affordable.
        Nature. 2017; 549: 451-453https://doi.org/10.1038/549451a