Advertisement

FLASH with carbon ions: Tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model

      Highlights

      • FLASH radiotherapy with carbon ions was demonstrated for the first time in vivo.
      • FLASH (100 Gy/s) reduced normal tissue toxicity and tumor growth.
      • FLASH irradiation reduces the number of lung metastases.

      Abstract

      Background and purpose

      The FLASH effect is a potential breakthrough in radiotherapy because ultra-high dose-rate irradiation can substantially widen the therapeutic window. While the normal tissue sparing at high doses and short irradiation times has been demonstrated with electrons, photons, and protons, so far evidence with heavy ions is limited to in vitro cell experiments. Here we present the first in vivo results with high-energy 12C-ions delivered at an ultra-high dose rate.

      Materials and methods

      LM8 osteosarcoma cells were subcutaneously injected in the posterior limb of female C3H/He mice 7 days before radiation exposure. Both hind limbs of the animals were irradiated with 240 MeV/n 12C-ions at ultra-high (18 Gy in 150 ms) or conventional dose rate (∼18 Gy/min). Tumor size was measured until 28 days post-exposure, when animals were sacrificed and lungs, limb muscles, and tumors were collected for further histological analysis.

      Results

      Irradiation with carbon ions was able to control the tumour both at conventional and ultra-high dose rate. FLASH decreases normal tissue toxicity as demonstrated by the reduced structural changes in muscle compared to conventional dose-rate irradiation. Carbon ion irradiation in FLASH conditions significantly reduced lung metastasis compared to conventional dose-rate irradiation and sham-irradiated animals.

      Conclusions

      We demonstrated the FLASH effect in vivo with high-energy carbon ions. In addition to normal tissue sparing, we observed tumor control and a substantial reduction of lung metastasis in an osteosarcoma mouse model.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kacem H.
        • Almeida A.
        • Cherbuin N.
        • Vozenin M.-C.
        Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation.
        Int J Radiat Biol. 2022; 98: 506-516https://doi.org/10.1080/09553002.2021.2004328
        • Vozenin M.-C.
        • De Fornel P.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.-F.
        • et al.
        The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients.
        Clin Cancer Res. 2019; 25: 35-42https://doi.org/10.1158/1078-0432.CCR-17-3375
        • Vozenin M.-C.
        • Hendry J.H.
        • Limoli C.L.
        Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken.
        Clin Oncol. 2019; 31: 407-415https://doi.org/10.1016/j.clon.2019.04.001
        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6https://doi.org/10.1126/scitranslmed.3008973
        • Vozenin M.-C.
        • Montay-Gruel P.
        • Limoli C.
        • Germond J.-F.
        All Irradiations that are ultra-high dose rate may not be FLASH: the critical importance of beam parameter characterization and in vivo validation of the FLASH effect.
        Radiat Res. 2020; 194https://doi.org/10.1667/RADE-20-00141.1
      1. Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front Oncol 2020;9. https://doi.org/10.3389/fonc.2019.01563.

        • Rothwell B.C.
        • Kirkby N.F.
        • Merchant M.J.
        • Chadwick A.L.
        • Lowe M.
        • Mackay R.I.
        • et al.
        Determining the parameter space for effective oxygen depletion for FLASH radiation therapy.
        Phys Med Biol. 2021; 66https://doi.org/10.1088/1361-6560/abe2ea
        • Bourhis J.
        • Montay-Gruel P.
        • Gonçalves Jorge P.
        • Bailat C.
        • Petit B.
        • Ollivier J.
        • et al.
        Clinical translation of FLASH radiotherapy: Why and how?.
        Radiother Oncol. 2019; 139: 11-17https://doi.org/10.1016/j.radonc.2019.04.008
        • Schüler E.
        • Acharya M.
        • Montay‐Gruel P.
        • Loo B.W.
        • Vozenin M.-C.
        • Maxim P.G.
        Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm.
        Med Phys. 2022; 49: 2082-2095https://doi.org/10.1002/mp.15442
        • Jolly S.
        • Owen H.
        • Schippers M.
        • Welsch C.
        Technical challenges for FLASH proton therapy.
        Phys Medica. 2020; 78: 71-82https://doi.org/10.1016/j.ejmp.2020.08.005
        • Montay-Gruel P.
        • Corde S.
        • Laissue J.A.
        • Bazalova-Carter M.
        FLASH radiotherapy with photon beams.
        Med Phys. 2022; 49: 2055-2067https://doi.org/10.1002/mp.15222
        • Gao F.
        • Yang Y.
        • Zhu H.
        • Wang J.
        • Xiao D.
        • Zhou Z.
        • et al.
        First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays.
        Radiother Oncol. 2022; 166: 44-50https://doi.org/10.1016/j.radonc.2021.11.004
        • Weber U.A.
        • Scifoni E.
        • Durante M.
        FLASH radiotherapy with carbon ion beams.
        Med Phys. 2022; 49: 1974-1992https://doi.org/10.1002/mp.15135
        • Tinganelli W.
        • Sokol O.
        • Quartieri M.
        • Puspitasari A.
        • Dokic I.
        • Abdollahi A.
        • et al.
        Ultra-high dose rate (FLASH) carbon ion irradiation: dosimetry and first cell experiments.
        Int J Radiat Oncol. 2022; 112: 1012-1022https://doi.org/10.1016/j.ijrobp.2021.11.020
        • Tessonnier T.
        • Mein S.
        • Walsh D.W.M.
        • Schuhmacher N.
        • Liew H.
        • Cee R.
        • et al.
        FLASH dose rate helium ion beams: first in vitro investigations.
        Int J Radiat Oncol. 2021; 111: 1011-1022https://doi.org/10.1016/j.ijrobp.2021.07.1703
        • Adrian G.
        • Ruan J.-L.
        • Paillas S.
        • Cooper C.R.
        • Petersson K.
        In vitro assays for investigating the FLASH effect.
        Expert Rev Mol Med. 2022; 24e10https://doi.org/10.1017/erm.2022.5
        • Colangelo N.W.
        • Azzam E.I.
        The importance and clinical implications of FLASH ultra-high dose-rate studies for proton and heavy ion radiotherapy.
        Radiat Res. 2019; 193: 1https://doi.org/10.1667/RR15537.1
        • Durante M.
        • Debus J.
        • Loeffler J.S.
        Physics and biomedical challenges of cancer therapy with accelerated heavy ions.
        Nat Rev Phys. 2021; 3: 777-790https://doi.org/10.1038/s42254-021-00368-5
        • Castro J.R.
        • Saunders W.M.
        • Tobias C.A.
        • Chen G.T.Y.
        • Curtis S.
        • Lyman J.T.
        • et al.
        Treatment of cancer with heavy charged particles.
        Int J Radiat Oncol Biol Phys. 1982; 8: 2191-2198https://doi.org/10.1016/0360-3016(82)90569-7
        • Wardman P.
        Radiotherapy using high-intensity pulsed radiation beams (FLASH): a radiation-chemical perspective.
        Radiat Res. 2020; 194: 607-617https://doi.org/10.1667/RADE-19-00016
        • Boscolo D.
        • Scifoni E.
        • Durante M.
        • Krämer M.
        • Fuss M.C.
        May oxygen depletion explain the FLASH effect? A chemical track structure analysis.
        Radiother Oncol. 2021; 162: 68-75https://doi.org/10.1016/j.radonc.2021.06.031
        • Durante M.
        • Brauer-Krisch E.
        • Hill M.
        Faster and safer? FLASH ultra-high dose rate in radiotherapy.
        Br J Radiol. 2017; 91: 20170628https://doi.org/10.1259/bjr.20170628
        • Favaudon V.
        • Labarbe R.
        • Limoli C.L.
        Model studies of the role of oxygen in the FLASH effect.
        Med Phys. 2022; 49: 2068-2081https://doi.org/10.1002/mp.15129
        • Labarbe R.
        • Hotoiu L.
        • Barbier J.
        • Favaudon V.
        A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect.
        Radiother Oncol. 2020; 153: 303-310https://doi.org/10.1016/j.radonc.2020.06.001
        • Ramos-Méndez J.
        • Domínguez-Kondo N.
        • Schuemann J.
        • McNamara A.
        • Moreno-Barbosa E.
        • Faddegon B.
        LET-dependent intertrack yields in proton irradiation at ultra-high dose rates relevant for FLASH therapy.
        Radiat Res. 2020; 194: 351-362https://doi.org/10.1667/RADE-20-00084.1
      2. Jin JY, Gu A, Wang W, Oleinick NL, Machtay M, (Spring) Kong FM. Ultra-high dose rate effect on circulating immune cells: a potential mechanism for FLASH effect? Radiother Oncol 2020;149:55–62. https://doi.org/10.1016/j.radonc.2020.04.054.

        • Helm A.
        • Tinganelli W.
        • Simoniello P.
        • Kurosawa F.
        • Fournier C.
        • Shimokawa T.
        • et al.
        Reduction of lung metastases in a mouse osteosarcoma model treated with carbon ions and immune checkpoint inhibitors.
        Int J Radiat Oncol. 2021; 109: 594-602https://doi.org/10.1016/j.ijrobp.2020.09.041
        • Simeonov Y.
        • Weber U.
        • Schuy C.
        • Engenhart-Cabillic R.
        • Penchev P.
        • Durante M.
        • et al.
        Monte Carlo simulations and dose measurements of 2D range-modulators for scanned particle therapy.
        Z Med Phys. 2021; 31: 203-214https://doi.org/10.1016/j.zemedi.2020.06.008
        • Luoni F.
        • Weber U.
        • Boscolo D.
        • Durante M.
        • Reidel C.-A.
        • Schuy C.
        • et al.
        Beam monitor calibration for radiobiological experiments with scanned high energy heavy ion beams at FAIR.
        Front Phys. 2020; 8https://doi.org/10.3389/fphy.2020.568145
        • Sápi J.
        • Kovács L.
        • Drexler D.A.
        • Kocsis P.
        • Gajári D.
        • Sápi Z.
        • et al.
        Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy.
        PLoS ONE. 2015; 10https://doi.org/10.1371/journal.pone.0142190
        • Wallner C.
        • Drysch M.
        • Hahn S.A.
        • Becerikli M.
        • Puscz F.
        • Wagner J.M.
        • et al.
        Alterations in pectoralis muscle cell characteristics after radiation of the human breast in situ.
        J Radiat Res. 2019; 60: 825-830https://doi.org/10.1093/jrr/rrz067
        • Rapp F.
        • Simoniello P.
        • Wiedemann J.
        • Bahrami K.
        • Grünebaum V.
        • Ktitareva S.
        • et al.
        Biological cardiac tissue effects of high-energy heavy ions – investigation for myocardial ablation.
        Sci Rep. 2019; 9https://doi.org/10.1038/s41598-019-41314-x
        • Singers Sørensen B.
        • Krzysztof Sitarz M.
        • Ankjærgaard C.
        • Johansen J.
        • Andersen C.E.
        • Kanouta E.
        • et al.
        In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH.
        Radiother Oncol. 2022; 167: 109-115https://doi.org/10.1016/j.radonc.2021.12.022
        • Rama N.
        • Saha T.
        • Shukla S.
        • Goda C.
        • Milewski D.
        • Mascia A.E.
        • et al.
        Improved tumor control through T-cell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system.
        Int J Radiat Oncol. 2019; 105 (S164–5)https://doi.org/10.1016/j.ijrobp.2019.06.187
        • Zakaria A.M.
        • Colangelo N.W.
        • Meesungnoen J.
        • Azzam E.I.
        • Plourde M.-É.
        • Jay-Gerin J.-P.
        Ultra-high dose-rate, pulsed (FLASH) Radiotherapy with carbon ions: generation of early, transient, highly oxygenated conditions in the tumor environment.
        Radiat Res. 2020; 194https://doi.org/10.1667/RADE-19-00015.1
        • Takahashi Y.
        • Yasui T.
        • Minami K.
        • Tamari K.
        • Hayashi K.
        • Otani K.
        • et al.
        Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma.
        Oncotarget. 2019; 10: 633-646https://doi.org/10.18632/oncotarget.26551
        • Eggold J.T.
        • Chow S.
        • Melemenidis S.
        • Wang J.
        • Natarajan S.
        • Loo P.E.
        • et al.
        Abdominopelvic FLASH Irradiation improves PD-1 immune checkpoint inhibition in preclinical models of ovarian cancer.
        Mol Cancer Ther. 2022; 21: 371-381https://doi.org/10.1158/1535-7163.MCT-21-0358
        • Yu P.
        • Lee Y.
        • Wang Y.
        • Liu X.
        • Auh S.
        • Gajewski T.F.
        • et al.
        Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases.
        J Immunol. 2007; 179: 1960-1968https://doi.org/10.4049/jimmunol.179.3.1960
        • Sobottka B.
        • Pestalozzi B.
        • Fink D.
        • Moch H.
        • Varga Z.
        Similar lymphocytic infiltration pattern in primary breast cancer and their corresponding distant metastases.
        Oncoimmunology. 2016; 5https://doi.org/10.1080/2162402X.2016.1153208
        • Zhang J.
        • Endres S.
        • Kobold S.
        Enhancing tumor T cell infiltration to enable cancer immunotherapy.
        Immunotherapy. 2019; 11: 201-213https://doi.org/10.2217/imt-2018-0111
        • Zhang Y.
        • Zhang Z.
        The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.
        Cell Mol Immunol. 2020; 17: 807-821https://doi.org/10.1038/s41423-020-0488-6
        • Oliver A.J.
        • Keam S.P.
        • von Scheidt B.
        • Zanker D.J.
        • Harrison A.J.
        • Tantalo D.GM.
        • et al.
        Primary and metastatic breast tumors cross-talk to influence immunotherapy responses.
        Oncoimmunology. 2020; 9https://doi.org/10.1080/2162402X.2020.1802979
        • Zhang Y.
        • Ding Z.
        • Perentesis J.P.
        • Khuntia D.
        • Pfister S.X.
        • Sharma R.A.
        Can rational combination of ultra-high dose rate FLASH radiotherapy with immunotherapy provide a novel approach to cancer treatment?.
        Clin Oncol. 2021; 33: 713-722https://doi.org/10.1016/j.clon.2021.09.003