Advertisement
Original Article| Volume 171, P189-197, June 2022

Download started.

Ok

nTMS-derived DTI-based motor fiber tracking in radiotherapy treatment planning of high-grade gliomas for avoidance of motor structures

  • Christian D. Diehl
    Correspondence
    Corresponding author at: Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany

    Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Enrike Rosenkranz
    Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Martin Mißlbeck
    Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Maximilian Schwendner
    Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    2 Department of Diagnostic and Interventional Radiology, Universitiy Hopital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
    Nico Sollmann
    Footnotes
    2 Department of Diagnostic and Interventional Radiology, Universitiy Hopital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
    Affiliations
    Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
    Search for articles by this author
  • Author Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Sebastian Ille
    Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Bernhard Meyer
    Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Stephanie E. Combs
    Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany

    Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Denise Bernhardt
    Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany

    Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Sandro M. Krieg
    Footnotes
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    Affiliations
    Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
    Search for articles by this author
  • Author Footnotes
    1 Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
    2 Department of Diagnostic and Interventional Radiology, Universitiy Hopital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
    3 Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.

      Highlights

      • nTMS (DTI-FTTMS detects cortical and subcortical motor areas.
      • nTMS (DTI-FTTMS) detects cortical and subcortical motor areas.
      • DTI-FTTMS can be easily implemented in RT planning of motor-eloquent glioma.
      • With DTI-FTTMS the corticospinal tract can be spared without affecting PTV dose.
      • Our approach might help to avoid neurological sequelae after RT.

      Abstract

      Background

      Management of high-grade gliomas (HGGs) close to motor areas is challenging due to the risk of treatment-related morbidity. Thus, for resection, functional mapping of the corticospinal tract (CST) with navigated transcranial magnetic stimulation (nTMS) combined with diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTTMS) is increasingly used. This study investigated the application of DTI-FTTMS in adjuvant radiation therapy (RT) planning of HGGs for CST avoidance.

      Methods

      The preoperative DTI-FTTMS-based CST reconstructions of 35 patients harboring HGGs were incorporated into the RT planning system and merged with planning imaging. The CST was delineated as the planning risk volume (PRV-FTTMS). Intensity-modulated RT (IMRT) plans were optimized to preserve PRV-FTTMS. Segments within the planning target volume (PTV) were not spared (overlap).

      Results

      With plan optimization, mean dose (Dmean) of PRV-FTTMS can be reduced by 17.1% on average (range 0.1–37.9%), thus from 25.5 Gy to 21.2 Gy (p < 0.001). For PRV-FTTMS segments beyond the PTV dose, reduction is possible by 26.8% (range 0.1–43.9%, Dmean 17.4 Gy vs. 12.5 Gy, p < 0.001). Considering only portions within the 50% isodose level, Dmean is decreased by 46.7% from 38.6 Gy to 20.5 Gy (range 19.1–62.8%, p < 0.001). PTV coverage was not affected: V95% and V90% were 96.4 ± 3.1% and 98.0 ± 3.9% vs. 96.1 ± 3.5% (p = 0.34) and 98.3 ± 2.9% (p = 0.58). Dose constraints for organs at risk (OARs) were all met.

      Conclusion

      This study demonstrates that DTI-FTTMS can be utilized in the RT planning of HGGs for CST sparing. However, the degree of dose reduction depends on the overlap with the PTV. The functional benefit needs to be investigated in future prospective clinical trials.

      Abbreviations:

      ATRX (alpha thalassemia/mental retardation syndrome X-linked), BMRC (British Medical Research Council), CST (corticospinal tract), DES (direct electrical stimulation), DTI-FT (diffusion tensor imaging fiber tracking), FLAIR (fluid attenuated inversion recovery), ICRU (International Commission On Radiation Units And Measurements), IMRT (intensity-modulated radiation therapy), MEP (motor-evoked potential), MGMT (methyl-guanin-methyl-transferase), nTMS (navigated transcranial magnetic stimulation), OAR (organ at risk), PRV (planning risk volume), QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic), rMT (resting motor threshold), TPS (treatment planning system), WHO (World Health Organization), WM (white matter), BOLD-fMRI (blood oxygenation level dependent functional magnetic resonance imaging), MRI (magnetic resonance imaging), ROI (region of interest), EF (elastic fusion), DVH (dose volume histogram), VMAT (volumetric-modulated arc therapy), HGG (high-grade glioma)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Claes A.n.
        • Idema A.J.
        • Wesseling P.
        Diffuse glioma growth: a guerilla war.
        Acta Neuropathol. 2007; 114: 443-458
        • Ostrom Q.T.
        • Cioffi G.
        • Gittleman H.
        • Patil N.
        • Waite K.
        • Kruchko C.
        • et al.
        CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016.
        Neuro Oncol. 2019; 21: v1-v100
        • Louis D.N.
        • Perry A.
        • Wesseling P.
        • Brat D.J.
        • Cree I.A.
        • Figarella-Branger D.
        • et al.
        The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
        Neuro Oncol. 2021; 23: 1231-1251
        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • Weller M.
        • Fisher B.
        • Taphoorn M.J.B.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • van den Bent M.J.
        • Brandes A.A.
        • Taphoorn M.J.B.
        • Kros J.M.
        • Kouwenhoven M.C.M.
        • Delattre J.-Y.
        • et al.
        Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951.
        J Clin Oncol. 2013; 31: 344-350
        • Grabowski M.M.
        • Recinos P.F.
        • Nowacki A.S.
        • Schroeder J.L.
        • Angelov L.
        • Barnett G.H.
        • et al.
        Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma.
        J Neurosurg. 2014; 121: 1115-1123
        • Stummer W.
        • Pichlmeier U.
        • Meinel T.
        • Wiestler O.D.
        • Zanella F.
        • Reulen H.J.
        • et al.
        Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial.
        Lancet Oncol. 2006; 7: 392-401
        • Pichlmeier U.
        • Bink A.
        • Schackert G.
        • Stummer W.
        Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients.
        Neuro Oncol. 2008; 10: 1025-1034
        • Rahman M.
        • Abbatematteo J.
        • De Leo E.K.
        • Kubilis P.S.
        • Vaziri S.
        • Bova F.
        • et al.
        The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma.
        J Neurosurg. 2017; 127: 123-131
        • Bassaganyas-Vancells C.
        • Roldán P.
        • González J.J.
        • Ferrés A.
        • García S.
        • Culebras D.
        • et al.
        Combined use of 5-aminolevulinic acid and intraoperative low-field magnetic resonance imaging in high-grade glioma surgery.
        World Neurosurg. 2019; 130: e206-e212
        • Carl B.
        • Bopp M.
        • Saß B.
        • Pojskic M.
        • Gjorgjevski M.
        • Voellger B.
        • et al.
        Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography.
        Neurosurg Focus. 2019; 47: E11
        • Giammalva G.R.
        • Ferini G.
        • Musso S.
        • Salvaggio G.
        • Pino M.A.
        • Gerardi R.M.
        • et al.
        Intraoperative ultrasound: emerging technology and novel applications in brain tumor surgery.
        Front Oncol. 2022; 12818446
        • Krieg S.M.
        • Shiban E.
        • Buchmann N.
        • Gempt J.
        • Foerschler A.
        • Meyer B.
        • et al.
        Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas.
        J Neurosurg. 2012; 116: 994-1001
        • Krieg S.M.
        • Shiban E.
        • Buchmann N.
        • Meyer B.
        • Ringel F.
        Presurgical navigated transcranial magnetic brain stimulation for recurrent gliomas in motor eloquent areas.
        Clin Neurophysiol. 2013; 124: 522-527
        • Tarapore P.E.
        • Tate M.C.
        • Findlay A.M.
        • Honma S.M.
        • Mizuiri D.
        • Berger M.S.
        • et al.
        Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation.
        J Neurosurg. 2012; 117: 354-362
        • Giampiccolo D.
        • Howells H.
        • Bährend I.
        • Schneider H.
        • Raffa G.
        • Rosenstock T.
        • et al.
        Preoperative transcranial magnetic stimulation for picture naming is reliable in mapping segments of the arcuate fasciculus.
        Brain Commun. 2020; 2fcaa158
        • Umana G.E.
        • Scalia G.
        • Graziano F.
        • Maugeri R.
        • Alberio N.
        • Barone F.
        • et al.
        Navigated transcranial magnetic stimulation motor mapping usefulness in the surgical management of patients affected by brain tumors in eloquent areas: a systematic review and meta-analysis.
        Front Neurol. 2021; 12644198
        • Frey D.
        • Strack V.
        • Wiener E.
        • Jussen D.
        • Vajkoczy P.
        • Picht T.
        A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values.
        Neuroimage. 2012; 62: 1600-1609
        • Krieg S.M.
        • Sollmann N.
        • Obermueller T.
        • Sabih J.
        • Bulubas L.
        • Negwer C.
        • et al.
        Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation.
        BMC Cancer. 2015; 15: 231
        • Sollmann N.
        • Ille S.
        • Hauck T.
        • Maurer S.
        • Negwer C.
        • Zimmer C.
        • et al.
        The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients.
        BMC Cancer. 2015; 15: 261
        • Sollmann N.
        • Wildschuetz N.
        • Kelm A.
        • Conway N.
        • Moser T.
        • Bulubas L.
        • et al.
        Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.
        J Neurosurg. 2018; 128: 800-810
        • Sollmann N.
        • Zhang H.
        • Fratini A.
        • Wildschuetz N.
        • Ille S.
        • Schröder A.
        • et al.
        Risk assessment by presurgical tractography using navigated TMS maps in patients with highly motor- or language-eloquent brain tumors.
        Cancers (Basel). 2020; 12: 1264
        • Niyazi M.
        • Brada M.
        • Chalmers A.J.
        • Combs S.E.
        • Erridge S.C.
        • Fiorentino A.
        • et al.
        ESTRO-ACROP guideline “target delineation of glioblastomas”.
        Radiother Oncol. 2016; 118: 35-42
        • Salazar O.M.
        • Philip Rubin M.D.
        • Feldstein M.L.
        • Pizzutiello R.
        High dose radiation therapy in the treatment of malignant gliomas: final report.
        Int J Radiat Oncol Biol Phys. 1979; 5: 1733-1740
        • Walker M.D.
        • Strike T.A.
        • Sheline G.E.
        An analysis of dose-effect relationship in the radiotherapy of malignant gliomas.
        Int J Radiat Oncol Biol Phys. 1979; 5: 1725-1731
        • Ding M.
        • Newman F.
        • Chen C.
        • Stuhr K.
        • Gaspar L.E.
        Dosimetric comparison between 3DCRT and IMRT using different multileaf collimators in the treatment of brain tumors.
        Med Dosim. 2009; 34: 1-8
        • Salans M.
        • Tibbs M.D.
        • Karunamuni R.
        • Yip A.
        • Huynh-Le M.-P.
        • Macari A.C.
        • et al.
        Longitudinal change in fine motor skills after brain radiotherapy and in vivo imaging biomarkers associated with decline.
        Neuro Oncol. 2021; 23: 1393-1403
        • Scoccianti S.
        • Detti B.
        • Gadda D.
        • Greto D.
        • Furfaro I.
        • Meacci F.
        • et al.
        Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist's guide for delineation in everyday practice.
        Radiother Oncol. 2015; 114: 230-238
        • Krieg S.M.
        • Lioumis P.
        • Mäkelä J.P.
        • Wilenius J.
        • Karhu J.
        • Hannula H.
        • et al.
        Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report.
        Acta Neurochir (Wien). 2017; 159: 1187-1195
        • Sollmann N.
        • Krieg S.M.
        • Säisänen L.
        • Julkunen P.
        Mapping of motor function with neuronavigated transcranial magnetic stimulation: a review on clinical application in brain tumors and methods for ensuring feasible accuracy.
        Brain Sci. 2021; 11: 897
        • Sollmann N.
        • Meyer B.
        • Krieg S.M.
        Implementing functional preoperative mapping in the clinical routine of a neurosurgical department: technical note.
        World Neurosurg. 2017; 103: 94-105
        • Säisänen L.
        • Julkunen P.
        • Niskanen E.
        • Danner N.
        • Hukkanen T.
        • Lohioja T.
        • et al.
        Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects.
        J Clin Neurophysiol. 2008; 25: 367-372
        • Sollmann N.
        • Bulubas L.
        • Tanigawa N.
        • Zimmer C.
        • Meyer B.
        • Krieg S.M.
        The variability of motor evoked potential latencies in neurosurgical motor mapping by preoperative navigated transcranial magnetic stimulation.
        BMC Neurosci. 2017; 18: 5
        • Krieg S.M.
        • Buchmann N.H.
        • Gempt J.
        • Shiban E.
        • Meyer B.
        • Ringel F.
        Diffusion tensor imaging fiber tracking using navigated brain stimulation–a feasibility study.
        Acta Neurochir (Wien). 2012; 154: 555-563
        • Gerhardt J.
        • Sollmann N.
        • Hiepe P.
        • Kirschke J.S.
        • Meyer B.
        • Krieg S.M.
        • et al.
        Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion – Evaluation by means of anatomical landmarks.
        Clin Neurol Neurosurg. 2019; 183: 105387
        • Ille S.
        • Schroeder A.
        • Wagner A.
        • Negwer C.
        • Kreiser K.
        • Meyer B.
        • et al.
        Intraoperative MRI-based elastic fusion for anatomically accurate tractography of the corticospinal tract: correlation with intraoperative neuromonitoring and clinical status.
        Neurosurg Focus. 2021; 50: E9
        • Ille S.
        • Schwendner M.
        • Zhang W.
        • Schroeder A.
        • Meyer B.
        • Krieg S.M.
        Tractography for subcortical resection of gliomas is highly accurate for motor and language function: ioMRI-based elastic fusion disproves the severity of brain shift.
        Cancers (Basel). 2021; 13: 1787
        • Rosenstock T.
        • Grittner U.
        • Acker G.
        • Schwarzer V.
        • Kulchytska N.
        • Vajkoczy P.
        • et al.
        Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data.
        J Neurosurg. 2017; 126: 1227-1237
      1. Gregoire V, Mackie TR. State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother. 2011;15:555-9.

        • Kataria T.
        • Sharma K.
        • Subramani V.
        • Karrthick K.P.
        • Bisht S.S.
        Homogeneity Index: An objective tool for assessment of conformal radiation treatments.
        J Med Phys. 2012; 37: 207-213
        • Shi C.
        • Peñagarícano J.
        • Papanikolaou N.
        Comparison of IMRT treatment plans between linac and helical tomotherapy based on integral dose and inhomogeneity index.
        Med Dosim. 2008; 33: 215-221
        • Duffey P.
        • Chari G.
        • Cartlidge N.E.
        • Shaw P.J.
        Progressive deterioration of intellect and motor function occurring several decades after cranial irradiation. A new facet in the clinical spectrum of radiation encephalopathy.
        Arch Neurol. 1996; 53: 814-818
        • Lunsford L.D.
        • Khan A.A.
        • Niranjan A.
        • Kano H.
        • Flickinger J.C.
        • Kondziolka D.
        Stereotactic radiosurgery for symptomatic solitary cerebral cavernous malformations considered high risk for resection.
        J Neurosurg. 2010; 113: 23-29
        • Marks J.E.
        • Bagĺan R.J.
        • Prassad S.C.
        • Blank W.F.
        Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume.
        Int J Radiat Oncol Biol Phys. 1981; 7: 243-252
        • Minniti G.
        • Clarke E.
        • Lanzetta G.
        • Osti M.F.
        • Trasimeni G.
        • Bozzao A.
        • et al.
        Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis.
        Radiat Oncol. 2011; 6
        • Valk P.E.
        • Dillon W.P.
        Radiation injury of the brain.
        AJNR Am J Neuroradiol. 1991; 12: 45-62
        • Diehl C.D.
        • Schwendner M.J.
        • Sollmann N.
        • Oechsner M.
        • Meyer B.
        • Combs S.E.
        • et al.
        Application of presurgical navigated transcranial magnetic stimulation motor mapping for adjuvant radiotherapy planning in patients with high-grade gliomas.
        Radiother Oncol. 2019; 138: 30-37
        • Schwendner M.J.
        • Sollmann N.
        • Diehl C.D.
        • Oechsner M.
        • Meyer B.
        • Krieg S.M.
        • et al.
        The role of navigated transcranial magnetic stimulation motor mapping in adjuvant radiotherapy planning in patients with supratentorial brain metastases.
        Front Oncol. 2018; 8: 424
        • Conti A.
        • Pontoriero A.
        • Ricciardi G.K.
        • Granata F.
        • Vinci S.
        • Angileri F.F.
        • et al.
        Integration of functional neuroimaging in CyberKnife radiosurgery: feasibility and dosimetric results.
        Neurosurg Focus. 2013; 34: E5
        • Dzierma Y.
        • Schuermann M.
        • Melchior P.
        • Nuesken F.
        • Oertel J.
        • Rube C.
        • et al.
        Optimizing adjuvant stereotactic radiotherapy of motor-eloquent brain metastases: sparing the nTMS-defined motor cortex and the hippocampus.
        Front Oncol. 2021; 11628007
        • Picht T.
        • Schilt S.
        • Frey D.
        • Vajkoczy P.
        • Kufeld M.
        Integration of navigated brain stimulation data into radiosurgical planning: potential benefits and dangers.
        Acta Neurochir (Wien). 2014; 156: 1125-1133
        • Tokarev A.S.
        • Rak V.A.
        • Sinkin M.V.
        • Evdokimova O.L.
        • Stepanov V.N.
        • Koynash G.V.
        • et al.
        Appliance of navigated transcranial magnetic stimulation in radiosurgery for brain metastases.
        J Clin Neurophysiol. 2020; 37: 50-55
        • Adeberg S.
        • Harrabi S.B.
        • Bougatf N.
        • Bernhardt D.
        • Rieber J.
        • Koerber S.A.
        • et al.
        Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma: A dosimetric comparison.
        Strahlenther Onkol. 2016; 192: 770-779
        • Igaki H.
        • Sakumi A.
        • Mukasa A.
        • Saito K.
        • Kunimatsu A.
        • Masutani Y.
        • et al.
        Corticospinal tract-sparing intensity-modulated radiotherapy treatment planning.
        Rep Pract Oncol Radiother. 2014; 19: 310-316
        • Altabella L.
        • Broggi S.
        • Mangili P.
        • Conte G.M.
        • Pieri V.
        • Iadanza A.
        • et al.
        Integration of Diffusion Magnetic Resonance Tractography into tomotherapy radiation treatment planning for high-grade gliomas.
        Phys Med. 2018; 55: 127-134
        • Korytko T.
        • Radivoyevitch T.
        • Colussi V.
        • Wessels B.W.
        • Pillai K.
        • Maciunas R.J.
        • et al.
        12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors.
        Int J Radiat Oncol Biol Phys. 2006; 64: 419-424
        • Combs S.E.
        • Edler L.
        • Rausch R.
        • Welzel T.
        • Wick W.
        • Debus J.
        Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma.
        Acta Oncol. 2013; 52: 147-152
        • Karunamuni R.
        • Bartsch H.
        • White N.S.
        • Moiseenko V.
        • Carmona R.
        • Marshall D.C.
        • et al.
        Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma.
        Int J Radiat Oncol Biol Phys. 2016; 94: 297-304
        • Seibert T.M.
        • Karunamuni R.
        • Kaifi S.
        • Burkeen J.
        • Connor M.
        • Krishnan A.P.
        • et al.
        Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy.
        Int J Radiat Oncol Biol Phys. 2017; 97: 910-918
        • Gorbunov N.V.
        • Kiang J.G.
        Brain damage and patterns of neurovascular disorder after ionizing irradiation. Complications in radiotherapy and radiation combined injury.
        Radiat Res. 2021; 196: 1-16
        • Huynh-Le M.-P.
        • Tibbs M.D.
        • Karunamuni R.
        • Salans M.
        • Tringale K.R.
        • Yip A.
        • et al.
        Microstructural injury to corpus callosum and intrahemispheric white matter tracts correlate with attention and processing speed decline after brain radiation.
        Int J Radiat Oncol Biol Phys. 2021; 110: 337-347
        • Bulubas L.
        • Sardesh N.
        • Traut T.
        • Findlay A.
        • Mizuiri D.
        • Honma S.M.
        • et al.
        Motor cortical network plasticity in patients with recurrent brain tumors.
        Front Hum Neurosci. 2020; 14
        • Ius T.
        • Angelini E.
        • Thiebaut de Schotten M.
        • Mandonnet E.
        • Duffau H.
        Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”.
        Neuroimage. 2011; 56: 992-1000
        • Ferini G.
        • Viola A.
        • Valenti V.
        • Tripoli A.
        • Molino L.
        • Marchese V.A.
        • et al.
        Whole Brain Irradiation or Stereotactic RadioSurgery for five or more brain metastases (WHOBI-STER): A prospective comparative study of neurocognitive outcomes, level of autonomy in daily activities and quality of life.
        Clin Transl Radiat Oncol. 2022; 32: 52-58
        • Gagliano A.
        • Prestifilippo A.
        • Cantale O.
        • Ferini G.
        • Fisichella G.
        • Fontana P.
        • et al.
        Role of the combination of cyclin-dependent kinase inhibitors (CDKI) and radiotherapy (RT) in the treatment of metastatic breast cancer (MBC): advantages and risks in clinical practice.
        Front Oncol. 2021; 11643155