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Evidence from studies which combined 2D-3D external beam radiotherapy (EBRT) ± chemotherapy with
2D brachytherapy (BT) for anal cancer suggest favorable outcomes when compared with chemo-EBRT
alone. Further improvement of results can be expected in the era of intensity modulated EBRT and
MRI-guided adaptive BT. Despite this, BT is not discussed as a therapeutic option in the prominent inter-
national guidelines and its use remains limited to selected institutions. Special skills, complexity, equip-
ment, cost and reimbursement policies have been highlighted as barriers for its wider implementation.
However, these factors are relevant for modern radiotherapy in general. Therefore, it can be argued that
the role of BT as a component of chemoradiation should be redefined. We describe the historical evolu-
tion and current role of BT boost for anal cancer and outline its potential in the context of combined
intensity modulated EBRT, chemotherapy and MRI-guided adaptive BT.
� 2022 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 169 (2022) 25–34 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
With annual incidence of 0.5 per 100,000, anal cancer accounts
for <3% of lower gastrointestinal tract malignancies [1,2]. It is more
common in immunocompromised patients and smokers [3]. Rise of
incidence over past decades [4] can be attributed to the increased
prevalence of HPV infection which is the most important cause
[3,5]. Abdominoperineal resection was the main treatment in the
past, but resulted in suboptimal locoregional control and high mor-
bidity due to sphincter loss [6]. Following encouraging first experi-
ence with chemoradiation [7,8], its effectiveness was confirmed by
several retrospective and phase II studies [9–13]. Randomized tri-
als showed superiority of chemoradiation over radiotherapy alone
[14,15] with 5-fluorouracil and mitomycin-C as concomitant regi-
men of choice [16–18]. Pelvic external beam radiotherapy (EBRT)
with concurrent chemotherapy and simultaneous integrated EBRT
or sequential brachytherapy (BT) boost is nowadays standard
treatment [19,20]. Old studies used radiography-based or 3D con-
formal EBRT [21]. Implementation of intensity modulated and
image guided radiotherapy (IMRT/IGRT) enabled tighter treatment
margins and adaptive approach, resulting in improved outcomes
[22–28]. BT was historically performed according to the Paris sys-
tem rules [29], without specific guidelines for target volume defi-
nition. The pace of progress in EBRT was not paralleled in BT,
where the techniques from the 1980s [30] remain conceptually
unchanged even nowadays. We describe the evolution and current
role of BT boost for anal cancer chemoradiation and outline its
potential advancements in the context of image guided adaptive
BT (IGABT).
Literature search

We performed a PubMed search from the earliest date through
January 31, 2020, using the terms ‘‘anal cancer” AND ‘‘brachyther-
apy”. Secondary search among the references in the identified
reports was done to find publications addressing the topic of this
review. We included studies of any design. Case reports, commen-
taries and editorials were excluded.
The dawn of anal cancer brachytherapy

Beginnings of anal cancer BT date back to the 1920’s, when it
was suggested as alternative to surgery for operable tumours
[31]. Interstitial BT was scheduled 2 weeks after EBRT. Gold-
filtered radon seeds with activity of 1–2.5 mCi per seed were
inserted with trocar needles under proctoscopic or palpatory guid-
ance to deliver 1000–5000 mCi*h, depending on the tumour size.
Alternative technique was based on an intracavitary applicator
similar to a proctoscope. After applicator insertion, the obturator
was replaced by a holder, containing a tandem of brass-filtered
sources. Lead was used to protect the uninvolved side. At a rate
of 100–250 mCi/day, a total dose of 2000–5000 mCi*h was deliv-
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ered over 3–6 weeks. In <4 cm tumours, the results were described
as promising with ‘‘long-standing cures and preservation of anus
and rectum in most cases”. In more advanced tumors, the outcome
was disappointing [31]. In the 1950’s, interstitial BT with 226-Ra
was introduced [32,33]. In a series from Manchester, 59 patients
were treated for moderately advanced and advanced disease. Poor
5-year overall survival (OS) was accompanied by a high
radionecrosis rate [32]. In the 1960s, the Lyon group introduced
a fractionated technique for carefully selected patients. Interstitial
needles were loaded with 2.6 or 4 mg of 226-Ra over 3.2 cm. They
were inserted through the skin or mucosa and fixed by sutures or
intraanal tube. Most applications were one-plane, but selected
cases received volume implants. The dose of first-session was up
to 4000 rads over 2–3 days. In incomplete responders at 6 weeks,
a second implant was used to deliver 2500 to 3000 rads. In rare
cases, a third implant of additional 2000 rads was applied 2months
later. 5-year survival was 68% and necrosis rate 5% [33].
Reneissance by Papillon

Papillon et al. introduced the novel Lyon approach in 1971 and
published it in1983 [30]. Radiumwas replaced by 192-Ir wires, and
BT technique refined according to the improved understanding of
the natural history of the disease and technical developments.
Papillon described 3 protocols, adapted to tumour characteristics.
Protocol 1 was designed for T1-T3 N0 disease, considered to have
high probability of tumor control and anal function preservation.
It started with Co-60 EBRT, delivering 3000 rad transperineally at
5 cm and 1800 rad presacrally at 8 cm depth. This was followed
by a 2-months interval to allow for toxicity resolution and tumor
downsizing to a volume, suitable for a single-plane implant. At
BT, a crescent-shaped or circular 15 mm thick plastic template
with guiding holes was sutured to the skin. The distance between
adjacent and opposite holes was 1 and 3.2 cm, respectively. The
implant volume corresponded to the quadrant and depth of initial
tumour extension, underscoring the importance of tumor assess-
ment at diagnosis. A single row of equidistant and parallel needles
was inserted through the template under guidance of palpating
finger approximately 5 mm below the mucosa. Needle position
was checked with fluoroscopy. 5–7 Ir-192 wires with activity of
1.5–2.5 mCi/cm and 5 cm length were applied to deliver 1500–
2000 rad at the 85% isodose over 18–28 hours according to the
Paris system [29]. The dose was chosen depending on the findings
at diagnosis and BT. To minimize the complications risk, BT was
not used upfront or as monotherapy, was limited to single-plane
implants and was kept <30 Gy [30,34]. Protocol 2 included preoper-
ative chemoradiation and surgery. Protocol 3 was used for fixed
lesions and cases with nodal metastases. 18 MV photons and elec-
trons were used to deliver 4000 rad to the inguino-pelvic nodal
regions, followed by a 6–7 weeks break and an EBRT or BT boost
of up to 5500 rad to the tumor and enlarged nodes [30].
Modern era

Papillon’s split-course Protocol 1 evolved in the context of the
European BT experience [35]. Built on this tradition, a typical mod-
ern conventional regimen starts with EBRT + concomitant
chemotherapy to the primary tumour and elective nodal volumes,
followed by an EBRT or BT boost [35]. A treatment gap was applied
between sequences in most series [36–41].

Reports using conventional radiography-based BT boost are
listed in Table 1. EBRT dose in these series ranged from 33 Gy to
50 Gy (biologically equivalent estimates in 2 Gy/fraction; linear-
quadratic model; a/b = 10 Gy). Concomitant chemotherapy was
used in 10–100% of cases. At BT, around 3–10 parallel and equidis-
26
tant needles were inserted through a Papillon-type interstitial
template to a depth of 3–10 cm, according to the Paris system rules
for curved planar implants [29]. Target concepts were not consis-
tently detailed and were generally based on the residual tumour
or scar at BT, while taking the initial tumour into account. Radiog-
raphy was used for dose planning and documentation. Dose was
specified at 85% of the mean basal dose [29]. A dose of 10–30 Gy
was delivered with low dose rate (LDR) or pulsed dose rate (PDR)
technique in most series [34,36–38,40,42–52]. Experience with
high dose rate (HDR) BT is emerging [26,40,53]. Single plane
implants were used by majority of authors, indicating that residual
tumours >10 mm in thickness were typically deemed unsuitable
for BT boost. Several authors used a plastic tube or cylinder in
the anus to stabilize implant geometry, displace uninvolved tissue
from the high-dose and allow flatus and faeces escape [36,49–51].
Studies in Table 2 used ultrasound, CT or MRI for insertion guid-
ance. This ‘‘2D to 3D experience” was typically limited to optimiza-
tion of implant geometry without systematic dose adaptation in
the context of standardized target concepts (Table 2).
Patient selection for brachytherapy boost

Patients need to be fit for anaesthesia and tolerate immobiliza-
tion. Advanced age is not a contraindication for BT. Lestrade et al.
reported on 76 patients >70 years treated with a median EBRT dose
of 45 Gy (range: 36–56 Gy), concomitant chemotherapy (51%) and
BT boost of 18 Gy (range: 10–31.7 Gy). Five-year local control (LC)
and OS were 76%. Acute and late Grade 3–4 toxicities were 14% and
7%, respectively. Modified Charlson Comorbidity index [54] had no
impact on outcome [55]. Good tolerance among elderly and com-
parable tumour control with the younger cohorts was confirmed
by others [26,56]. In the original Papillon experience, BT was
applied in tumours <4 cm, involving <2/3 of circumference and
with good response to EBRT [30]. Others have suggested that BT
target should extend <5 cm craniocaudally and involve <1/2 of cir-
cumference [35]. These criteria correspond to T2 and well-
responding T3 tumors, which constitute 75–95% cases from pub-
lished series [36–39,42,43,45,46]. The proportion of T1 and T4
tumors in the reported cohorts ranges from 5-20% [36–38,38,39,4
2,43,45,46,53,57]. Evidence on effectiveness of BT as single or
upfront therapy in small tumours is limited [20,47,50]. Several
authors have demonstrated that node-positive patients benefit
from anal BT [43,58]. In oligometastatic disease pelvic chemoradi-
ation, local BT and ablative treatment of metastases can offer a
chance of cure. In metastatic disease, BT may be used to palliate
or prevent local symptoms.
Local control and survival

In a recent systematic review, median 5-year local/locoregional
control (LC/LRC) after EBRT and BT was 79% (range: 71–92%), dis-
ease free survival (DFS) 76% (range: 66–86%), OS 69% (range: 63–
82%) and colostomy free survival (CFS) 76% (range: 61–86%) [21].
Published series are detailed in Tables 1 and 2. Node-negative sta-
tus at diagnosis and good response to EBRT are prognostic of supe-
rior outcome in most series [21,36,39,40,43,49,52,59]. Stage T3-4
and poor pre-boost regression are negative prognostic factors [43].

Data on comparative effectiveness of BT and EBRT boost come
from indirect estimates and retrospective series. Keeping the limi-
tations of such comparisons in mind, the available evidence
demonstrates superior or similar effectiveness of BT when com-
pared with EBRT boost. These findings could be attributed to the
physical and biological advantages of BT over EBRT (Fig. 1, Table 3).
Series in which BT boost was used in majority of patients [21] com-
pare favourably with trials, based predominantly on EBRT alone



Table 1
Series on pelvic chemoradiation and brachytherapy boost which used conventional Papillon technique, Paris system and radiography for brachytherapy optimization. Some reports included non-radiotherapy patients in outcome
analysis. Brackets: ranges. Standard deviation specified by ±. Pts–patients; N-number; EBRT-external beam radiotherapy; Fx-Fractions: TL-treatment length (target, active or insertion length). D-Dose; ChT-chemotherapy; BT-
Brachytherapy; DR-dose rate; Ref. DR-reference dose rate; Y-years; LC-local control; DFS-disease free survival; OS-overall survival; CFS-colostomy free surivival; Ch–channel; NS-not specified; NA-not applicable; St-stage; L-low; P-
pulsed; H-high; aCrude rate.

Reference and pt. N EBRT [Gy/Fx] ChT [%] Boost [N] Brachytherapy details Outcome [%]

BT EBRT Planes Needles DR TL [cm] D [Gy] Ref. DR [cGy/h] Y LC DFS OS CFS

Papillon [34]
N = 369

48/16 NS 221 0 1 4–8 L 5–7 NS
(15–20)

NS – – – 66a 61a

Peiffert [59]
N = 118

45–48/21–25 31 101 3 1 – 2 3–8 L 4–8 22
(15–29)

92
(40–138)

5 80a – 60a pre-1989: 75a

post-1989: 84a

Gerard [44]
N = 95

48/16
39/13

100 85 5 1 3–9 L 4–9 19
(14–28)

110
(59–158)

5 85a – 84 72

Sandhu [49]
N = 79

30–50/10–25 16 79 0 1 5–10 L 6–10 24
(20–40)

43
(36–57)

3 78 a – T1-2: 93
T3-4: 65

71a

Gerard [51]
N = 19

44–50/22–25 47 19 0 1 – 2 4–9 P 4–7 15
(10–25)

50
(50–50)

– – – – –

Weber [38]
N = 90

median 40/22 100 49 41 NS NS L NS 19
NS)

51.8
(NS)

5 – – 77 –

Chapet [43]
N = 252

48/16
39/13

67 218 34 1 5–6 L 5–6 20 ±5 NS 5 83a T1-2: 66
T3-4: 47

T1-2:77
T3-4: 63

61

Ortholan [47]
N = 69

27–55/9–25
-

11 46 20 1 NS L NS 20 (NS)55 (NS) NS 5 91a 89 94 85

Bruna [46]
N = 71

44–50/25
36/12

66 71 0 1 – 2 3–12 P 4–8 18
(10–25)

70
(50–150)

2 90a 81 90 89

Saarilahti [56]
N = 62

45/25 100 29 30 1 4–7 H 4–7 1–2 � 5–6 NA 5 81 77 – 100

Tournier-R. [45]
N = 286

30–50/7–25
17–50/10–30

44 233 24 1 – 2 2–16 L, P 4–10 19
(10–37)

NS 5 St I: 89
St II: 77
St IIIA; 96
St IIIB: 77

St I: 82
St II: 67
St IIIA: 54
St IIIB: 49

- St I: 88
St II: 70
St IIIA: 75
St IIIB: 56

Oehler J. [53]
N = 81

45/25 72 h 34 47 1 3–8 H 4–9 7 � 2 NA 5 BT: 90
EBRT: 85

BT: 76
EBRT: 73

BT: 66
EBRT: 66

BT: 85
EBRT: 82

Widder [40]
N = 129

46/23 74 h 23 106 1 4–7 P, H 4–8 13
(5–26)

NS 5 St I: 94
St II: 86
St III: 80

St I: 70
St II: 57
St III: 27

St I: 76
St II: 64
St III: 32

St I: 76
St II: 58
St III: 25

Hannoun-L. [37]
N = 162

40–50/20–25 72 86 76 1 – 2 3–6 L 4–6 17
(10–25)

NS
(50–70)

5 T1-2: 85
T3-4: 64

– T1-2: 84
T3-4: 68

T1-2: 72
T3-4: 51

López-G. [50]
N = 38

32–50/25 58 i 32 + 6 BT only 0 1 4–8 L
P

3–10 20
(15–35)

68 (50–70)
52 (50–70)

5 87 58 76 84a

Lestrade [42]
N = 219

30–56/10–28 72 209 0 1 4–12 L, P 4–9 18
(10–32)

75
(23–125)

5 T1-2: 80
T3-4: 77

T1-2: 70
T3-4: 68

T1-2: 85
T3-4: 76

T1-2: 81
T3-4: 78

Cordoba [36]
N = 103

median 45/NS 38 103 0 1 2–12 L 4–10 17
(10–30)

NS 5 89 – 86% 86%

Kent [48]
N = 52

45/25 100 36 16 1 5 L NS NS
(15–20)

NS 5 – BT: 91
EBRT: 78

BT: 75
EBRT: 68

BT: 97
EBRT: 80

Arcelli [52]
N = 123

45/25 94 102 21 NS 2–7 P 5–8 20
(13–25)

67–80 5 T1-2: 84
T3-4: 79

– T1-2: 84
T3-4: 64

T1-2: 64
T3-4: 49
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[14–18,60–62]. In the CORS-03 study, boost type was one of the
prognostic factors for 5-year local recurrence (LR) (BT: 12% vs.
EBRT: 33%; p = 0.002) and CFS (BT: 71% vs. EBRT: 56%; p = 0.04).
This was in spite of a trend for a lower nominal BT (mean:
17.4 Gy; range: 10–25 Gy) than EBRT dose (mean: 18.3 Gy; range
8–25 Gy; p = 0.07). Importantly, characteristics of patients and
tumours were balanced across the two groups of patients in this
study. For LR, prognostic significance of boost type was maintained
on multivariate analysis (hazard ratio 0.62; 95% CI: 0.41–0.92).
Surgery for progression or complications was needed in 26% EBRT
and 8% BT boost patients (p = 0.003) [37]. In analysis of node-
positive patients from the CORS-03 cohort, BT boost maintained
a positive impact with lower 5-year LR when compared with EBRT
(4% vs. 31%, p = 0.003; hazard ratio 0.08; p = 0.042) [58]. In a series
from Lyon, BT boost was associated with superior OS (75.8% vs.
47.5%; p < 0.0001) and DFS (63.4 % vs. 37.9%; p < 0.001) when com-
pared with EBRT [43]. Similar advantage of BT was published
recently by an Italian group demonstrating a 5-year OS of 79% vs.
52%; p = 0.015 and distant metastases free survival (DMFS) of
95% vs. 77%; p = 0.015 [52]. Other reports which used both types
of boost offer similar results, but should be interpreted cautiously
due to unbalanced samples and bias with large tumours being
boosted more often with EBRT [37–39,43,57,63]. Some authors
found no impact of boost-type. In one study, 5-year DFS was
86.5% for BT and 71.6% for EBRT boost (p = 0.07), but only 6% of
patients received BT boost [63]. Another series with a more bal-
anced cohort found similar results [39]. In a report from Switzer-
land, a median of 20 Gy EBRT and 18 Gy BT boost was applied in
41 (46%) and 49 (54%) cases, resulting in a 5-year LRC of 70.7%
and 75.5%, respectively (p = 0.82) [38]. Kent et al. reported on
non-significant differences at 5 years between BT for anal canal
(cancer specific survival-CSS: 91%, OS: 75%) and electron boost
for anal margin tumors (CSS: 78%, OS: 68%) [48]. In another series,
BT (n = 34) and EBRT (n = 47) boost resulted in similar 5-year LR
rate (10% vs. 15%; p = 0.5) and OS (66% in both groups) [53].
Toxicity

Radiosensitivity and functional stress make anal region prone to
treatment toxicity, but data interpretation is challenging. Majority
of studies reported crude rates, different scoring systems were
used, and grading criteria were often not specified. Further,
approximately 1/4 of patients received EBRT boost, but toxicity
was reported jointly with BT, making it difficult to corelate specific
endpoints with specific boost technique. Heterogeneity of
tumours, RT schedules and sample sizes complicates interpreta-
tions further. Notwithstanding all these challenges, the available
evidence demonstrates that the toxicity profile after BT compares
favorably with EBRT boost, which can be attributed to the sparing
of the healthy mucosa, uninvolved sphincter complex and the con-
tralateral nerves and vessels afforded by BT (Fig. 1, Table 3).

Acute local and hematologic toxicity during (chemo)radiation
develops in majority of patients. G1-2 dermato-mucositis in the
published studies ranged from 30–60% and proctitis from 10–30%
[39,43,44,50]. While side effects were limited to G1-2 in some ser-
ies [41,64], G3-4 acute toxicity was common, ranging from 10-30%
and often necessitating un-planned treatment breaks
[39,42,47,50]. In a report from Switzerland, Grade 3–4 toxicity
was higher in patients after EBRT when compared with BT boost
(43% vs. 15%; p = 0.008). This was due to worse hematologic
(13% vs 0%) and cutaneous (23% vs. 8%) reactions, while severe
diarrhea occurred in 6% in both subgroups [53]. In another study,
acute G3-4 toxicity didn’t differ between EBRT and BT boost [57].

Collectively, most common late toxicity for EBRT and BT-boost
cohorts is sphincter dysfunction with G1-2, G3 and G4 inconti-



Fig. 1. Comparison of volumetric modulated arc therapy (VMAT) with virtual image guided adaptive brachytherapy (IGABT) boost in a patient with a T3 N0 tumor, who
underwent planning CT both for VMAT and IGABT. To compare dose distributions, iso-effective prescriptions were selected and D98 was normalized to 95% of prescribed dose
both for the PTVEBRT and CTV-T HRBT (Table 3). (A) VMAT plan, optimized to PTV (CTV-T HR + 5 mm). Color wash: 95% to 105% of prescribed dose. (B) Virtual IGABT with a 2 cm
anal dilator. Virtual perineal template was projected on CT to place 15 virtual needles in 3 planes at a median depth of 63 mm (range: 37–88 mm). Paris-system plan,
specifying the dose at 85% isodose of basal dose-points was used as the starting point and optimized to meet the planning aims. Color-wash: 95% to 200% of prescribed dose.
Absence of CTV to PTV margin, sharp dose fall-off and displacement of healthy tissues result in a lower dose to the sphincter and anorectum when compared with VMAT.
Simultaneously, superior coverage and dose escalation inside the GTV-Tres is achieved. GTV-Tres – residual gross tumor volume; CTV-T HR – high risk clinical target volume of
the primary tumor.

P. Petric, N. Al-Hammadi, Karen-Lise Garm Spindler et al. Radiotherapy and Oncology 169 (2022) 25–34
nence in up to 25%, 10% and 4%, respectively
[15,26,36,39,40,42,44,47,49–51,53,64–66]. Mild to moderate fibro-
sis ranges from 0–25%, G3 stricture occurs in �5%, and complete
obstruction is extremely rare [18,26,36,39,40,47,49,51,64,66]. Mild
and transient late anorectal bleeding can occur in up to 15–70%,
but G3-4 bleeding is uncommon, reported in �2% of patients
(36,43,44,47,59). G2 and G3-4 necrosis occurrs in <10% and �5%,
respectively. Peiffert et al., using the Chassagne grading system
[67], reported on 13% of G3 necrosis [59]. Other chronic toxicities
of any grade include proctitis (0–26%), chronic pain (0–15%), skin
toxicity (0–10%) and fistulae (0–1%). Grade 3 genitourinary prob-
lems occur in up to approximately 5% [26,36,40,41,47–50,53,57,5
9,64]. Colostomy or abdominoperineal resection rate due to toxic-
ity is typically �5% [26,36,37,39–43,46–48,50–52,65], but was up
to 9% in selected series. [34,49,59]. The most frequent cause of
treatment-induced colostomy is necrosis, followed by severe
incontinence, hemorrhage, pain and fistula
[36,40,41,43,44,48,49,65].

In most of the published series offering direct comparisons, BT
results in a more favorable profile of late toxicities than the EBRT
boost. A group from Finland reported on biologically equivalent
doses (EQD23Gy: linear quadratic model, 2 Gy/fraction, a/b = 3 Gy)
to the anal canal after pelvic chemoradiation followed by BT
(n = 29) or EBRT boost (n = 30). BT boost resulted in a lower mean
EQD23Gy to the uninvolved anus than EBRT (44.8 Gy vs. 50.2 Gy;
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p < 0.01), and higher EQD23Gy to the tumor-infiltrated portion
(56.5 vs. 50.2 Gy; p < 0.01). Rate of late G2-3 proctitis corelated
with the EQD23Gy to the uninvolved anus and was non-
significantly higher after EBRT (12%) than BT boost (3%)
(p = 0.065) [26]. Three out of 129 patients from Vienna series (23
BT, 106 EBRT boost) developed post-treatment necrosis, all after
EBRT boost [40]. In a series from Ljubljana, late toxicity was lower
after BT than EBRT boost [39]. Ortholan et al. treated early stage
tumours with EBRT alone, EBRT + BT or BT alone and found overall
complication rates of 30%, 26% and 25%, respectively [47]. In the
CORS 3 study, abdominoperineal resection due to toxicity was
needed in 5% of patients after EBRT and 3% after BT boost [37].
Recent Italian series reported on similar results with a 5% colost-
omy rate for both boost types [52]. In the report by Gryc et al.,
there was no significant increase of late G3-4 toxicity in patients
who received additional BT boost after EBRT. Most common G3-4
toxicity was proctitis, occurring in 23% after EBRT and 16% after
BT boost. Overall rates of severe skin and genitourinary side effects
were below 3% and all cases occurred in the non-BT group [57].
Oehler-Jänne et al. found no significant impact of BT (n = 34) and
EBRT (n = 47) boost on quality of life, overall late side effects
(19% vs. 30%; p = 0.5), G1-2 incontinence (18% vs. 28%; p = 0.5),
G3-4 diarrhea (6% vs. 4%; p = NS) and sphincter pressure impair-
ment (37% vs. 29%; p = 0.6) [53].



Table 3
Dose-volume histogram parameters of volumetric modulated arc therapy (VMAT) and
image guided adaptive brachytherapy (IGABT) plans, presented in Fig. 1. GTV-Tres:
residual gross tumor volume; CTV-T HR: high risk clinical target volume of primary
tumor; PTV: planning target volume; EQD2: equivalent biological dose in 2 Gy
fractions, according to the LQ model and a/b ratio of 10 Gy and 3 Gy for tumor and
late-reacting normal tissues, respectively. a For IGABT there is no PTV margin and PTV
is identical to CTV-T HR. b Selected EBRT and BT prescriptions are almost iso-effective
in terms of EQD2.

VMAT IGABT

Target volume size [cm3]
GTV-Tres 11 11
CTV-T HR 31 31
PTV 67 a 31
b PTV dose prescription
Nominal D / Fractions 16 Gy / 8 Fractions 15 Gy / 25 Pulses
EQD2 [Gy10] 16 15.5
EQD2 [Gy3] 16 16.2
PTV EQD2 [Gy10]
D 98% 15.1 14.6
D 90% 15.6 16.6
D mean 16 23
PTV V 100% 59% 95%
GTV-Tres EQD2 [Gy10]
D 98% 16 19.3
D 90% 16 21.8
D mean 16.2 35.4
Ano/Rectum EQD2 [Gy3]
D 0.1 cm3 16.5 20.2
D 2 cm3 15.8 8.7
D 5 cm3 15.3 5.2
D mean 12.2 4.9
Ano/Rectum V 50% [cm3] 12 5
Sphincter EQD2 [Gy3]
D 0.1 cm3 16.5 37.9
D 2 cm3 15.8 10.8
D 5 cm3 14.2 5.4
D mean 7.7 5.2
Sphincter V 50% [cm3] 12 5
Body Volumes [cm3]
V 50% 250 112
V 150% 0 6.7
V 200% 0 1.6
Average D to Basal points [Gy] 16 20
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In the series of Lestrade et al., severe toxicity correlated with
the total dose and was 3% for doses �63 Gy and 10% for >63 Gy
(p = 0.02) [42]. In another study, a homogeneous cohort of patients
who received single-plane implants was assessed. Severe compli-
cations were curtailed (2% vs. 11%; p = 0.03) without compromising
the LC by a personalized reduction of the mean number of 192-Ir
wires (5 vs. 6), shorter wire length (54 mm vs. 63 mm), lower BT
reference dose (20 Gy vs. 23 Gy) and smaller volume of 85% isodose
(12 vs. 17 cm3). In multivariate analysis, total equivalent dose for
late responding tissues remained prognostic for late toxicity
(p = 0.01) [59].
Inter-sequence gap and overall treatment time

Detrimental effect of tumour cell repopulation due to prolonged
overall treatment time (OTT) was demonstrated for various
tumours, including anal cancer [38–40,63,68–70]. Gaps are diffi-
cult to avoid in anal cancer chemoradiation and doses of 60–
65 Gy were applied historically to counteract the effect of pro-
longed OTT [46,51]. Landmark trials on chemoradiation mandated
a 6-week gap between pelvic EBRT and tumour boost [14,15]. In
the RTOG 92-08 and ECOG E4292 studies, planned break was asso-
ciated with lower complete response, LRC and CFS, when compared
with the no-break cohort [71,72].
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OTT comparisons between sequential EBRT and BT boost are
scarce. Available evidence indicates advantage of BT which enables
dose delivery over a shorter time than sequential EBRT. In CORS-03
study, the mean inter-sequence gap was 36 (range: 0–106) days
and OTT 75 (range: 37–143) days. When compared with sequential
EBRT boost, BT boost was associated with a shorter gap (39 vs.
30 days; p = 0.02) and OTT (82 vs 69 days; p < 0.001). Shorter
OTT (<80 days vs. �80 days) was prognostic of lower 5-year local
relapse (LR: 14% vs. 34%; p = 0.005), and higher OS (84% vs 67%;
p < 0.001) and CFS (74% vs. 50%; p = 0.004). This was maintained
on multivariate analysis with a hazard ratio of 0.47 for LR (95%
CI: 0.22–1.0), 0.39 for OS (95% CI: 0.2–0.74) and 0.51 for CFS
(95% CI:0.29–0.9) [37]. Short OTT was not the only factor leading
to improved outcome: there was a positive impact of BT vs. EBRT
boost on LR, which was most pronounced when OTT was <80 days
(BT: 9% vs. EBRT: 28%; p = 0.03) and non-significant for longer OTTs
(BT: 29% vs. EBRT: 38%; p = 0.21). In another series, median OTT
was 63 (range: 20–143) days. It was shorter for BT-boost when
compared with EBRT-only subgroup (55 vs. 63 days; p = NS).
Shorter OTT had positive impact on LC in stage T1-2 (p = 0.021)
[40].

Nowadays, anal cancer chemoradiation is predominantly based
on pelvic EBRT with simultaneous integrated EBRT boost to the pri-
mary tumor without planned treatment breaks. The results of this
approach can therefore not be compared directly with the histori-
cal data from the published BT studies which are typically charac-
terized by often long inter-sequence gaps and OTTs. Series which
used sequential BT boost report on an average gap of around
1 month [36–38,41] and even up to 3–4 months in individual cases
[36,38]. Correspondingly, average OTT in these reports ranged from
60–80 days [37–41]. Cordoba et al. found that the OTT cut-off for
superior LC was at �58 days (p = 0.008) [36]. Another group iden-
tified the gap-threshold of �38 days as independent prognostic
factor for DFS (HR 1.33; 95%CI: 1.04–1.7; p = 0.0025) [63]. In
another series with a median OTT of 57 (range 30–98) days, an
OTT < 73 was associated with superior 5-year LRC (73% vs. 56%;
p = 0.04) [39]. Weber et al. reported on a median inter-sequence
gap of 37.5 days (range: 4–97 days) and OTT of 73.5 days (range:
50–155 days). Factors associated with poorer locoregional control
on univariate analysis were age �65 years, male gender and
inter-sequence gap. Five-year LRC was 84.5% when gap was
�37.5 days and 61.5% with longer intervals (p = 0.03). On multi-
variate analysis, only age (p = 0.01) and gap duration (p = 0.02)
retained prognostic significance. The authors improved the LRC
by limiting the gap to 2 weeks [38].

Therefore, future studies with strategies to minimize or abolish
the gap between pelvic EBRT and BT are required to enable com-
parisons between simultaneous EBRT boost and sequential BT
boost. Modern techniques of pelvic EBRT, performed by experi-
enced institutions play a central role in this context. In a recently
published population-based analysis including 8948 patients, the
use of IMRT, treatment at an academic center and treatment in
more recent years were associated with a shorter overall duration
of treatment [70]. Pelvic IMRT has been shown to reduce the acute
adverse events and un-planned gaps when compared with conven-
tional EBRT [22–25,27,28]. Comparison between RTOG studies
demonstrated reduction of acute toxicity in favour of IMRT. Treat-
ment breaks occurred less frequently (49% vs. 62%; p = 0.09), were
shorter (0–12 days vs. 0–33 days; p = 0.0047) and resulted in a
shorter median OTT (43 vs. 49 days; p < 0.01) with IMRT than with
conventional EBRT (27). In a series from Finland, pelvic IMRT
(n = 20) or 3D conformal radiotherapy (3D CRT) (n = 39), was fol-
lowed by HDR BT boost. There was significantly less grade 3–4
diarrhoea and dermato-mucositis and shorter inter-sequence gap
in IMRT than 3D CRT group [56]. In summary, under a premise of
equivalent OTTs, it can be reasonable to hypothesize superiority
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of BT over EBRT boost due to inherent radiobiological and physical
advantages of BT (Fig. 1, Table 3). Well-designed prospective stud-
ies are required to address this research question.
Number of brachytherapy channels and planes

Traditionally, it was postulated that multiple-plane implants
lead to increased risk of late necrosis and proctitis [20,34] and were
avoided in conventional BT cohorts (Table 1). In a French series,
late toxicity of any grade was 56% after BT with <6 and 72% with
�6 interstitial needles (p = 0.014) [42]. In another report, double-
plane implant was applied in 4/71 patients due to a large residual
tumour. One of these patients required temporary colostomy for
G4 necrosis, but was free of disease and toxicity on long-term fol-
low up. None of the remaining 3 developed severe toxicity [46].
Gerard et al. reported on 95 patients, 85 of whom received BT
boost. There were 5 cases of severe necrosis, all occurring in T3-4
lesions treated with single-plane implants, one of them following
previous bladder cancer EBRT [44]. It is likely that the implants
with large number of channels and/or multiple planes are a surro-
gate for a higher tumour volume. In cases where residual tumour
thickness at BT exceeds 10 mm, carefully performed multiple-
plane implants according to the rules of the Paris system may be
beneficial [35]. This approach has been used safely in a substantial
proportion of patients by several authors [37,45,46,51,59].
Radiotherapy dose

In majority of studies, BT was tailored to tumour response after
EBRT, with poorly responding tumors receiving higher boost doses
[42,43,52]. Therefore, conclusions regarding dose–response rela-
tionships are challenging, since pre-boost tumor regression is an
important prognostic factor for disease control [42,43,45,51,73].
In a series from Vienna, pelvic chemoradiation was followed by
BT or additional EBRT. Total nominal dose was 60 Gy (range: 46–
66 Gy) for BT and 60 Gy (range: 30–70 Gy) for EBRT. Radiobiolog-
ically equivalent doses were not reported. In T3-4 tumours, 5-year
LR was 14% after �54 Gy and 70% after <54 Gy (p = 0.007) (40). In
T1-2 tumours, no impact of dose was observed. A randomized 4-
arm ACCORD 03 trial investigated the impact of chemotherapy
prior to pelvic chemoradiation and boost-dose escalation [18].
LDR BT was used to apply 15 Gy in the standard arm and 20 Gy
or 25 Gy (depending on response) in experimental arm. The trial
didn’t demonstrate the benefit of interventions on CFS. However,
high LC and low toxicity was observed in the most intensive arm,
consisting of induction chemotherapy, chemoradiation and high-
dose BT boost [18]. On the contrary, the CORS 3 study in which a
mean of 18.3 Gy (range: 8–25 Gy) was applied for EBRT and
17.4 Gy (range: 10–25 Gy) for BT boost, demonstrated no influence
of boost dose on 5-year OS, LC and CFS [37]. In the large series from
Lyon, a BT boost of 20 ± 5 Gy was applied depending on the degree
of tumour regression. No significant impact of dose on the outcome
was found [43]. Cordoba et al. applied a similar response-adapted
approach, delivering a 10–30 Gy BT boost and found no association
between the dose and outcome [36]. A group from Bologna aimed
for a BT boost of �20 Gy in patients with residual disease after
chemoradiation, and �16 Gy in complete responders. Five-year
OS, LC and DMFS were non-significantly higher in patients, receiv-
ing �18 Gy when compared with >18 Gy [52]. Similar results were
obtained by Lestrade et al., with BT doses of �18 Gy associated
with significantly inferior 5-year LC, OS, CSS and CFS when com-
pared with lower doses [42]. The apparent lack of impact of BT
dose or even the inverse relationship in some studies can be attrib-
uted to the selection of poor responders for higher doses [42,43].
This standpoint is supported by the results by Gryc et al. who
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reported on the outcome of 190 patients treated with pelvic
(chemo)radiation to a mean dose of 48.7 Gy and EBRT boost of
15.5 ± 7.5 Gy. At 6 weeks after treatment, 47 (25%) poor responders
received an additional BT boost (10.1 ± 9.7 Gy), resulting in a mean
total dose of 67.5 ± 7.8 Gy. This dose escalation in poor responders
resulted in similar outcome as in good responders treated with
EBRT alone [57].
Brachytherapy dose rate

LDR Papillon‘s interstitial technique and the Paris system
remained the cornerstones of anal cancer BT for decades. After
the introduction of remote afterloaders, PDR BT has been recog-
nized as an attractive alternative. Based on the linear quadratic for-
malism, Brenner et al. suggested PDR combinations of pulse-
widths and -frequencies that would result in equivalent biological
effects on the target volume as LDR BT. The model estimated a 2%
increase of late toxicity, showing promise of PDR BT for clinical use
with small irradiated volumes [74]. The first report on PDR BT for
anal cancer by Roed et al. reported on good LC, but unacceptable
necrosis and colostomy rates. This series was characterized by
tumor stages similar to other reports, but the volumes receiving
�25 Gy were exscessive, ranging from 20 to 400 cm3 and were lar-
ger than 200 cm3 in 47% of cases. Furthermore, the application
technique consisted of one or two rows of concentric channels
with a large needle spacing from 1.3 to 2 cm. The boost dose con-
verted to the Paris system was excessive, ranging from 23–47 Gy.
Toxicity was high: lasting necrosis occurred in 76% of cases and
59% of patients received colostomy [75]. The main advantage of
BT over EBRT boost is to deliver a dose of 15–20 Gy to a smaller
volume, encompassing only the residual tumor (Tables 1 and 2).
The results of Roed et al. should be therefore interpreted critically
and the high toxicity has been ascribed to suboptimal implantation
technique, deviation from the Paris system and delivery of high
doses to large volumes. The potential small increase of risk due
to PDR technique as postulated by Brenner [74] was not a
toxicity-inducing factor in this series [73].

A study by the French cooperative group has later confirmed
feasibility, reliability, safety and good tolerance of PDR technique
[51]. Excellent local control rates and toxicity profiles of PDR BT
were consequently confirmed by several authors (Tables 1 and
2). Nowadays, PDR BT with nominal doses and hourly pulses corre-
sponding to the historic LDR experience, represents the most com-
mon approach with long-term follow up, demonstrating
comparable results to LDR BT [39,42,45,46,52,57,76,77]. In this
context, the importance of respecting the longstanding experience
of the Paris system rules cannot be over-emphasized.

HDR BT offers some practical advantages over the PDR/LDR
method and experience with this technique is growing
[40,41,53,64–66,78,79]. The published regimens typically consist
of initial pelvic EBRT and concurrent chemotherapy, followed by
2–7 HDR fractions of 3–7 Gy (Table 2). LC ranges from 80–90%,
OS from 70–80%, and CFS from 75–90%. The reported rates of tox-
icity compare favorably with the PDR approach. Doniec et al.
reported on their HDR experience with 50 patients who received
pelvic chemoradiation to 45 Gy in 25 fractions, followed by an
HDR boost. First five patients received a boost of 2 � 6 Gy, but
two of them developed sphincter necrosis, after which the dose
was reduced to 2 � 4 Gy. Local control at 5 years was 92% and
sphincter function was completely preserved in 80% [65]. In a ser-
ies by Falk et al., 25 patients received an HDR boost with 2–6 frac-
tions of 3–5 Gy for a total nominal boost dose of 10–15 Gy. Acute
genitourinary, gastrointestinal and cutaneous toxicities were lim-
ited to G1 and occurred in 37%, 41%, and 4%, respectively. Late
G3 toxicity occurred in 2 (7%), but persisted beyond 5 years only
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in one patient. There was no late G4 toxicity. Local control, overall
survival and colostomy-free survival at 2 years were 83%, 78% and
75%, respectively. Further research with longer follow up is
required to define the optimal fractionation of HDR BT and com-
pare the results with PDR/LDR experience.
What does the future hold?

Available reports consistently show favorable outcomes after
anal BT when compared with EBRT boost (Tables 1 and 2). Despite
the evidence suggesting an important role of BT in anal cancer
chemoradiation, BT is not discussed as therapeutic option in
prominent international guidelines [19], it is not part of the ongo-
ing trials on anal cancer, and its use remains limited to selected
institutions with long traditions (Tables 1, 2). Operator skills, treat-
ment complexity, special equipment and cost have been consid-
ered as barriers for the use of gynecological BT [80] and could be
extrapolated to anal cancer. However, these factors are also rele-
vant for adoption of complex EBRT, which remains unimpeded
and favoured by the reimbursement policies over BT [80,81]. Fur-
thermore, a cost-utility analysis of MRI-based IAGBT for cervical
cancer demonstrated reduced cost and increased effectiveness
when compared with CT-based or conventional 2D techniques
[82]. It can be hypothesized that similar health-economy effects
of IGABT could be observed also for anal cancer. Non-
invasiveness of EBRT is a commonly cited argument in its favor
over BT boost [80]. However, BT is a minimally invasive treatment
with negligible mechanical injury caused by the needle insertion.
In fact, the invasiveness of radiotherapy is more appropriately
described in terms of radiation damage to uninvolved normal tis-
sues due to exposure to high, moderate and low doses. In this con-
text, anal cancer BT is theoretically superior to EBRT boost at most
dose levels (Fig. 1, Table 3). This can be attributed to its intrinsic
physical and biological principles, which cannot be matched by
even the most complex EBRT techniques:

1. Steep gradients within a BT implant enable dose escalation
inside the target volume, high conformity at its periphery, and
rapid fall-of in surrounding tissue with small volumes receiving
low to moderate doses.

2. Dose-heterogeneity has favourable biological implications due
to different sensitivity of the tumour and organs at risk (OAR)
to varying time-dose patterns.

3. Since CTV to PTV margin is not used for BT, smaller volumes of
healthy tissues are exposed to high doses when compared with
EBRT boost.

4. Anal dilatation during BT can further reduce the exposure of
uninvolved tissues by displacing them from the high-dose
region.

5. BT boost is delivered over a short time, enabling a meaningful
reduction of OTT when compared with sequential EBRT boost.

6. BT boost is adapted to the residual tumor, enabling a meaning-
ful reduction of irradiated volume when compared with simul-
taneous integrated EBRT boost.

In summary, the reasons for BT underutilisation are controver-
sial if not frustrating, underscoring the need for an objective redef-
inition of its role in anal cancer.

Published experience with anal cancer BT comes mainly from
studies which combined 2D EBRT or 3D CRT, inconsistent
chemotherapy regimens, and conventional 2D BT after long med-
ian inter-sequence gaps (Table 1). Full impact of dose optimization
afforded by modern EBRT techniques and IGABT was thus not
exploited so far. Pelvic IMRT reduces the acute adverse events
and un-planned gaps when compared with conventional EBRT
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[22–25,27,28,70]. Volumetric modulated arc therapy (VMAT) offers
dosimetric and clinical advantage over fixed-beam IMRT [22] and
intensity modulated proton therapy (IMPT) can further reduce
the volume of bone marrow, bowel and skin receiving low- to
moderate doses. Through improved toxicity profile and patient
compliance, IMPT can minimize treatment breaks and OTT [81].
Favourable outcomes of anal cancer BT published so far were
achieved with techniques which could be considered suboptimal
by modern standards (Table 1). Some authors used ultrasound
and 3D imaging for insertion guidance and limited dose optimiza-
tion, but this was done in the absence of standardized target con-
cepts (Table 2). Meanwhile, IGABT led to an unprecedented
improvement of clinical outcomes in gynecological tumors
[83,84]. Attempts to achieve similar results with sophisticated
EBRT in place of BT resulted in decreased survival [85].

It is therefore reasonable to assume that the demonstrated
effectiveness of anal cancer BT would be even more pronounced
in the era of modern technologies, superseding the results of
EBRT-only cohorts. Novel regimens should be investigated in frame
of a multicenter study protocol, possibly of randomized design,
redefining the role of BT boost in treatment of this rare disease.
A combination of pelvic VMAT or IMPT with concurrent
chemotherapy +/- immunotherapy, and MRI-based IGABT with a
minimal or no inter-sequence gap could provide improved out-
comes. In this context, VMAT and IMPT should be regarded as a
method for individualized dose de-escalation outside the macro-
scopic target. Dose to regional lymph-node metastases should be
complemented with the simultaneous integrated boost and
coverage-probability planning [86]. Finally, the implementation
of MRI-based IGABT would enable personalized dose-tailoring to
the shrinking primary tumor and establishment of dose-volume-
effect relations for the OAR and target volume. Definition and con-
touring of new OAR (i.e. pudendal nerves, vessels, anal sphincter,
healthy anus) implicated in toxicity would become a meaningful
task due to the superb ability of IGABT to avoid these structures
[87–90]. The definition of concepts and terms regarding the target
volumes could benefit from the existent recommendations on
gynecological cancer due to some similarities between these
tumors [91,92]. Nonetheless, even in the era of IGABT, meticulous
attention to application technique based on the Paris system rules
remains a precondition for treatment success. In this context, care-
fully designed perineal templates with appropriate inter-channel
distance, reliable needle fixation mechanism, and opening for the
palpating finger and ultrasound probe for real-time guidance are
of major importance. Adaptive dose optimization should be per-
formed with utmost care, taking the longstanding experience with
the Paris system dosimetry into account.
Conclusion

Historically, BT boost generated excellent outcomes and should
be considered a component of anal cancer chemoradiation in
selected patients in the future. Novel regimens employing VMAT,
IMPT, systemic therapy and MRI-based IGABT without treatment
gaps are expected to improve the results further and should be
tested in frame of a prospective clinical study. In the context of
IGABT, the definition of concepts and terms for response-
adaptive target volume and organs at risk contouring is required.
Adaptive dose-optimization and dosimetry strategies should build
on extensive clinical experience from the past, with Paris system
representing the cornerstone for future developments.
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