3D dose reconstruction based on in vivo dosimetry for determining the dosimetric impact of geometric variations in high-dose-rate prostate brachytherapy

Published:January 13, 2022DOI:https://doi.org/10.1016/j.radonc.2022.01.006

      Highlights

      • 3D dose reconstruction based on in vivo dosimetry was performed for high-dose-rate prostate BT.
      • Maximum relative deviation in the clinical target volume D90% was 5%.
      • In one fraction a 18% increase in bladder D2cm3 was observed and a maximum deviation of 15% in urethra dose.
      • 3D dose reconstruction can aid in determining the dosimetric impact of geometric variations in BT.

      Abstract

      Introduction

      In vivo dosimetry (IVD) can be used for source tracking (ST), i.e., estimating source positions, during brachytherapy. The aim of this study was to exploit IVD-based ST to perform 3D dose reconstruction for high-dose-rate prostate brachytherapy and to evaluate the robustness of the treatments against observed geometric variations.

      Materials and Methods

      Twenty-three fractions of high-dose-rate prostate brachytherapy were analysed. The treatment planning was based on MRI. Time-resolved IVD was performed using a fibre-coupled scintillator. ST was retrospectively performed using the IVD measurements. The ST identified 2D positional shifts of each treatment catheter and thereby inferred updated source positions. For each fraction, the dose was recalculated based on the source-tracked catheter positions and compared with the original plan dose using differences in dose volume histogram indices.

      Results

      Of 352 treatment catheters, 344 had shifts of less than 5 mm. Shifts between 5 and 10 mm were observed for 3 catheters, and shifts greater than 10 mm for 2 catheters. The ST failed for 3 catheters.
      The maximum relative difference in clinical target volume (prostate + 3 mm isotropic margin) D90% was 5%. In one fraction, the bladder D2cm3 dose increased by 18% (1.4Gy) due to a single source position being inside the bladder rather than nearby as planned. The max increase in urethra dose was 1.5Gy (15%).

      Conclusion

      IVD-based 3D dose reconstruction for high-dose-rate prostate brachytherapy is feasible. The dosimetric impact of the observed catheter shifts was limited. Dose reconstruction can therefore aid in determining the dosimetric impact of geometric variations and errors in brachytherapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kovács G.
        • Pötter R.
        • Loch T.
        • Hammer J.
        • Kolkman-Deurloo I.-K.
        • de la Rosette J.J.M.C.H.
        • et al.
        GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer.
        Radiother Oncol. 2005; 74: 137-148https://doi.org/10.1016/j.radonc.2004.09.004
        • Hoskin P.J.
        • Colombo A.
        • Henry A.
        • Niehoff P.
        • Paulsen Hellebust T.
        • Siebert F.-A.
        • et al.
        GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update.
        Radiother Oncol. 2013; 107: 325-332https://doi.org/10.1016/j.radonc.2013.05.002
        • Valentin J.
        International Commission on Radiation Protection. Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97.
        Ann ICRP. 2005; 35: 1-51https://doi.org/10.1016/j.icrp.2005.05.002
        • International Atomic Energy Agency
        Lessons Learned from Accidental Exposures in Radiotherapy.
        International Atomic Energy Agency, Vienna2000 (https://www.iaea.org/publications/5818/lessons-learned-from-accidental-exposures-in-radiotherapy)
        • Tanderup K.
        • Beddar S.
        • Andersen C.E.
        • Kertzscher G.
        • Cygler J.E.
        In vivo dosimetry in brachytherapy.
        Med Phys. 2013; 40: 070902https://doi.org/10.1118/1.4810943
        • Nose T.
        • Koizumi M.
        • Yoshida K.
        • Nishiyama K.
        • Sasaki J.
        • Ohnishi T.
        • et al.
        In Vivo Dosimetry of High-Dose-Rate Interstitial Brachytherapy in the Pelvic Region: Use of a Radiophotoluminescence Glass Dosimeter for Measurement of 1004 Points in 66 Patients With Pelvic Malignancy.
        Int J Radiat Oncol Biol Phys. 2008; 70: 626-633https://doi.org/10.1016/j.ijrobp.2007.09.053
        • Johansen J.G.
        • Rylander S.
        • Buus S.
        • et al.
        Time-resolved in vivo dosimetry for source tracking in brachytherapy.
        Brachytherapy. 2018; 17: 122-132https://doi.org/10.1016/j.brachy.2017.08.009
        • England P.H.
        • Biennial
        • radiotherapy
        • error
        • data
        • analysis
        • and
        • learning
        • report,
        to December 2019.
        Report No. January 2018; 6: 2020
        • Poder J.
        • Carrara M.
        • Howie A.
        • Cutajar D.
        • Bucci J.
        • Rosenfeld A.
        Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors.
        Brachytherapy. 2019; 18: 711-719https://doi.org/10.1016/j.brachy.2019.05.001
        • Buus S.
        • Lizondo M.
        • Hokland S.
        • et al.
        Catheter migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI.
        Brachytherapy. 2018; 17: 50-58https://doi.org/10.1016/j.brachy.2017.08.005
        • Fonseca G.P.
        • Johansen J.G.
        • Smith R.L.
        • Beaulieu L.
        • Beddar S.
        • Kertzscher G.
        • et al.
        In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice.
        Phys Imaging Radiat Oncol. 2020; 16: 1-11https://doi.org/10.1016/j.phro.2020.09.002
        • Andersen C.E.
        • Nielsen S.K.
        • Lindegaard J.C.
        • Tanderup K.
        Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.
        Med Phys. 2009; 36: 5033-5043https://doi.org/10.1118/1.3238102
        • Gambarini G.
        • Carrara M.
        • Tenconi C.
        • et al.
        Online in vivo dosimetry in high dose rate prostate brachytherapy with MOSkin detectors: In phantom feasibility study.
        Appl Radiat Isotopes. 2014; 83: 222-226https://doi.org/10.1016/j.apradiso.2013.06.001
        • Johansen J.G.
        • Kertzscher G.
        • Jørgensen E.B.
        • Rylander S.
        • Bentzen L.
        • Hokland S.B.
        • et al.
        Dwell time verification in brachytherapy based on time-resolved in vivo dosimetry.
        Phys Med. 2019; 60: 156-161https://doi.org/10.1016/j.ejmp.2019.03.031
        • Linares Rosales H.M.
        • Archambault L.
        • Beddar S.
        • Beaulieu L.
        Dosimetric performance of a multipoint plastic scintillator dosimeter as a tool for real-time source tracking in high dose rate Ir brachytherapy.
        Med Phys. 2020; 47: 4477-4490https://doi.org/10.1002/mp.14246
        • Linares Rosales H.M.
        • Johansen J.G.
        • Kertzscher G.
        • Tanderup K.
        • Beaulieu L.
        • Beddar S.
        3D source tracking and error detection in HDR using two independent scintillator dosimetry systems.
        Med Phys. 2021; 48: 2095-2107https://doi.org/10.1002/mp.14607
        • Alabd R.
        • Safavi-Naeini M.
        • Wilson K.J.
        • Rosenfeld A.B.
        • Franklin D.R.
        A simulation study of BrachyShade, a shadow-based internal source tracking system for HDR prostate brachytherapy.
        Phys Med Biol. 2018; 63205019https://doi.org/10.1088/1361-6560/aae33d
        • Smith R.L.
        • Haworth A.
        • Panettieri V.
        • Millar J.L.
        • Franich R.D.
        A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking.
        Med Phys. 2016; 43: 2435-2442https://doi.org/10.1118/1.4946820
        • Buus S.
        • Rylander S.
        • Hokland S.
        • Søndergaard C.S.
        • Pedersen E.M.
        • Tanderup K.
        • et al.
        Learning curve of MRI-based planning for high-dose-rate brachytherapy for prostate cancer.
        Brachytherapy. 2016; 15: 426-434https://doi.org/10.1016/j.brachy.2016.03.011
        • Jørgensen E.B.
        • Johansen J.G.
        • Overgaard J.
        • Piché‐Meunier D.
        • Tho D.
        • Rosales H.M.L.
        • et al.
        A high‐Z inorganic scintillator–based detector for time‐resolved in vivo dosimetry during brachytherapy.
        Med. Phys. 2021; 48: 7382-7398
        • Kertzscher G.
        • Beddar S.
        Inorganic scintillation detectors for 192Ir brachytherapy.
        Phys Med Biol. 2019; 64225018https://doi.org/10.1088/1361-6560/ab421f
      1. Kaveckyte V, Jørgensen E, Johansen JG, Tedgren AC. Monte Carlo characterisation of high atomic number inorganic scintillators for in vivo dosimetry in Ir-192 brachytherapy. Abstract presented at the 63rd Annual Meeting of the American Association of Physicists in Medicine, July 25, 2021.

        • Jørgensen E.B.
        • Kertzscher G.
        • Buus S.
        • Bentzen L.
        • Hokland S.B.
        • Rylander S.
        • et al.
        Accuracy of an in vivo dosimetry-based source tracking method for afterloading brachytherapy - A phantom study.
        Med Phys. 2021; 48: 2614-2623https://doi.org/10.1002/mp.14812
        • Kertzscher G.
        • Andersen C.E.
        • Tanderup K.
        Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry.
        Med Phys. 2014; 41: 052102https://doi.org/10.1118/1.4870438
        • Rivard M.J.
        • Coursey B.M.
        • DeWerd L.A.
        • Hanson W.F.
        • Saiful Huq M.
        • Ibbott G.S.
        • et al.
        Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations.
        Med. Phys. 2004; 31: 633-674
        • Poder J.
        • Howie A.
        • Brown R.
        • Bucci J.
        • Rosenfeld A.
        • Enari K.
        • et al.
        Towards real time in-vivo rectal dosimetry during trans-rectal ultrasound based high dose rate prostate brachytherapy using MOSkin dosimeters.
        Radiotherapy and oncology. 2020; 151: 273-279https://doi.org/10.1016/j.radonc.2020.08.003
        • Rylander S.
        • Buus S.
        • Pedersen E.M.
        • Bentzen L.
        • Tanderup K.
        Dosimetric impact of contouring and catheter reconstruction uncertainties in US-, CT- and MRI-based high-dose-rate prostate brachytherapy treatment planning.
        Radiother Oncol. 2017; 123: 125-132https://doi.org/10.1016/j.radonc.2017.01.007
        • Kirisits C.
        • Rivard M.J.
        • Baltas D.
        • Ballester F.
        • De Brabandere M.
        • van der Laarse R.
        • et al.
        Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM.
        Radiother Oncol. 2014; 110: 199-212https://doi.org/10.1016/j.radonc.2013.11.002
        • Rink A.
        • Borg J.
        • Simeonov A.
        • O'Leary G.
        • Helou J.
        • Ménard C.
        • et al.
        Dosimetric impact of intrafraction changes in MR-guided high-dose-rate (HDR) brachytherapy for prostate cancer.
        Brachytherapy. 2018; 17: 59-67https://doi.org/10.1016/j.brachy.2017.06.001