The dosimetric impact of axillary nodes contouring variability in breast cancer radiotherapy: an AIRO multi-institutional study

Published:January 13, 2022DOI:https://doi.org/10.1016/j.radonc.2022.01.004

      Highlights

      • Contouring variability is a well-known issue in breast cancer radiotherapy.
      • Dosimetric impact of contouring variability of axillary nodes is scarcely investigated.
      • Variations in dosimetric coverage of axillary nodes emerged from a multicentric study.
      • The use of intensity modulated radiotherapy has amplified the dosimetric variations.
      • Consensus, quality assurance programme and automated outlining techniques are encouraged.

      Abstract

      Aim

      To quantify the dosimetric impact of contouring variability of axillary lymph nodes (L2, L3, L4) in breast cancer (BC) locoregional radiotherapy (RT).

      Materials and Methods

      18 RT centres were asked to plan a locoregional treatment on their own planning target volume (single centre, SC-PTV) which was created by applying their institutional margins to the clinical target volume of the axillary nodes of three BC patients (P1, P2, P3) previously delineated (SC-CTV). The gold standard CTVs (GS-CTVs) of P1, P2 and P3 were developed by BC experts’ consensus and validated with STAPLE algorithm. For each participating centre, the GS-PTV of each patient was created by applying the same margins as those used for the SC-CTV to SC-PTV expansion and replaced the SC-PTV in the treatment plan. Datasets were imported into MIM v6.1.7 [MIM Software Inc.], where dose-volume histograms (DVHs) were extracted and differences were analysed.

      Results

      17/18 centres used intensity-modulated RT (IMRT). The CTV to PTV margins ranged from 0 to 10 mm (median 5 mm). No correlation was observed between GS-CTV coverage by 95% isodose and GS-PTV margins width. Doses delivered to 98% (D98) and 95% (D95) of GS-CTVs were significantly lower than those delivered to the SC-CTVs. No significant difference between SC-CTV and GS-CTV was observed in maximum dose (D2), always under 110%. Mean dose ≥ 99% of the SC-CTVs and GS-CTVs was satisfied in 84% and 50%, respectively. In less than one half of plans, GS-CTV V95% was above 90%. Breaking down the GS-CTV into the three nodal levels (L2, L3 and L4), L4 had the lowest probability to be covered by the 95% isodose.

      Conclusions

      Overall, GS-CTV resulted worse coverage, especially for L4. IMRT was largely used and CTV-to-PTV margins did not compensate for contouring issues. The results highlighted the need for delineation training and standardization.

      Abbreviations:

      3D-CRT (Three-dimensional conformal RT), AAA (Analytical anisotropic algorithm), AIRO (Associazione Italiana di Radioterapia e Oncologia Clinica (Italian Association of Radiotherapy and Clinical Oncology)), ABAS (Atlas-based automated segmentation), BC (Breast cancer), BSG (Breast study group), CCC (Collapsed cone convolution), CT (Computed tomography), CTV (Clinical target volume), D98, D95, D2 (Dose delivered to 98%, 95%, and 2% of volume), DEGRO (German Society of Radiation Oncology), Dmean (Mean dose), DVH (Dose-volume histogram), GS (Gold Standard), ICRU (International Commission on Radiation Unit & Measurements), IEO (Istituto Europeo di Oncologia (European Institute of Oncology)), IMRT (Intensity-modulated RT), IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico (Scientific Institute for Research, Hospitalization and Healthcare)), L2/L3/L4 (Lymph node level 2/3/4), MDC (Mean distance to conformity), MLC (Multileaf collimator), N (Number of plans), OAR (Organ at risk), P1/P2/P3 (Patient 1/2/3), PTV (Planning target volume), RO (Radiation oncologist), RT (Radiotherapy), SC (Single centre), SD (Standard deviation), SPS (Software package system), STAPLE (Simultaneous truth and performance level estimation), V95 (Volume receiving at least 95% of the prescribed dose), VMAT (Volumetric modulated arc therapy), WB/CW (Whole breast/chest wall)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ciardo D.
        • Argenone A.
        • Boboc G.I.
        • Cucciarelli F.
        • De Rose F.
        • De Santis M.C.
        • et al.
        Variability in axillary lymph node delineation for breast cancer radiotherapy in presence of guidelines on a multi-institutional platform.
        Acta Oncologica. 2017; 56: 1081-1088
        • Leonardi M.C.
        • Pepa M.
        • Gugliandolo S.G.
        • Luraschi R.
        • Vigorito S.
        • Rojas D.P.
        • et al.
        Geometric contour variation in clinical target volume of axillary lymph nodes in breast cancer radiotherapy: an AIRO multi-institutional study.
        BJR. 2021; 94: 20201177https://doi.org/10.1259/bjr.20201177
        • Hurkmans C.W.
        • Borger J.H.
        • Pieters B.R.
        • Russell N.S.
        • Jansen E.P.M.
        • Mijnheer B.J.
        Variability in target volume delineation on CT scans of the breast.
        Int J Radiat Oncol Biol Phys. 2001; 50: 1366-1372
        • Vinod S.K.
        • Jameson M.G.
        • Min M.
        • Holloway L.C.
        Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies.
        Radiother Oncol. 2016 Nov; 121 (Epub 2016 Oct 8): 169-179https://doi.org/10.1016/j.radonc.2016.09.009
        • Spoelstra F.O.B.
        • Senan S.
        • Le Péchoux C.
        • Ishikura S.
        • Casas F.
        • Ball D.
        • et al.
        De Ruysscher D, van Sörnsen de Koste JR; Lung Adjuvant Radiotherapy Trial Investigators Group. Variations in target volume definition for postoperative radiotherapy in stage III non-small-cell lung cancer: analysis of an international contouring study.
        Int J Radiat Oncol Biol Phys. 2010; 76: 1106-1113
        • Jameson M.G.
        • Kumar S.
        • Vinod S.K.
        • Metcalfe P.E.
        • Holloway L.C.
        Correlation of contouring variation with modeled outcome for conformal non-small cell lung cancer radiotherapy.
        Radiother Oncol. 2014 Sep; 112 (Epub 2014 May 19): 332-336https://doi.org/10.1016/j.radonc.2014.03.019
        • McCall R.
        • MacLennan G.
        • Taylor M.
        • Lenards N.
        • Nelms B.E.
        • Koshy M.
        • et al.
        Anatomical contouring variability in thoracic organs at risk.
        Med Dosim. 2016; 41: 344-350https://doi.org/10.1016/j.meddos.2016.08.004
        • Li X.A.
        • Tai A.n.
        • Arthur D.W.
        • Buchholz T.A.
        • Macdonald S.
        • Marks L.B.
        • et al.
        Radiation Therapy Oncology Group Multi-Institutional and Multiobserver Study Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study.
        Int J Radiat Oncol Biol Phys. 2009; 73: 944-951https://doi.org/10.1016/j.ijrobp.2008.10.034
        • Sethi R.A.
        • No H.S.
        • Jozsef G.
        • Ko J.P.
        • Formenti S.C.
        Comparison of three-dimensional versus intensity-modulated radiotherapy techniques to treat breast and axillary level III and supraclavicular nodes in a prone versus supine position.
        Radiother Oncol. 2012 Jan; 102 (Epub 2011 Oct 10): 74-81https://doi.org/10.1016/j.radonc.2011.09.008
        • Wang W.
        • Ward R.
        • Jia D.
        • Ashworth S.
        • Estoesta E.
        • Moodie T.
        • et al.
        Location of arm draining lymph node in relation to breast cancer radiotherapy field and target volume.
        Radiother Oncol. 2019; 133: 193-197https://doi.org/10.1016/j.radonc.2018.10.038
        • Rudra S.
        • Al‐Hallaq H.A.
        • Feng C.
        • Chmura S.J.
        • Hasan Y.
        Effect of RTOG breast/chest wall guidelines on dose-volume histogram parameters.
        J Appl Clin Med Phys. 2014; 15: 127-137https://doi.org/10.1120/jacmp.v15i2.4547
      1. Prescribing, Recording and Reporting Photon Beam Therapy. International Commissions on Radiation Units and Measurements (Supplement to ICRU Report 50): Bethesda, MD, USA. Report 62 January 2009 Radiation Protection Dosimetry 133(1):60-62DOI: 10.1093/rpd/ncp005

        • Cacicedo J.
        • Navarro-Martin A.
        • Gonzalez-Larragan S.
        • De Bari B.
        • Salem A.
        • Dahele M.
        Systematic review of educational interventions to improve contouring in radiotherapy.
        Radiother Oncol. 2020 Mar; 144 (Epub 2019 Nov 28): 86-92https://doi.org/10.1016/j.radonc.2019.11.004
        • Francolini G.
        • Thomsen M.S.
        • Yates E.S.
        • Kirkove C.
        • Jensen I.
        • Blix E.S.
        • et al.
        Quality assessment of delineation and dose planning of early breast cancer patients included in the randomized Skagen Trial 1.
        Radiother Oncol. 2017; 123: 282-287https://doi.org/10.1016/j.radonc.2017.03.011
        • Borm K.J.
        • Oechsner M.
        • Düsberg M.
        • Buschner G.
        • Weber W.
        • Combs S.E.
        • et al.
        Irradiation of regional lymph node areas in breast cancer - Dose evaluation according to the Z0011, AMAROS, EORTC 10981–22023 and MA-20 field design.
        Radiother Oncol. 2020; 142: 195-201https://doi.org/10.1016/j.radonc.2019.08.021
        • Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): report 83. Journal of the ICRU 10(1)
        Report 83.
        Oxford University Press. 2010; https://doi.org/10.1093/jicru/ndq002
        • Warfield S.K.
        • Zou K.H.
        • Wells W.M.
        Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation.
        IEEE Trans Med Imaging. 2004 Jul; 23: 903-921https://doi.org/10.1109/TMI.2004.828354
        • Batumalai V.
        • Koh E.S.
        • Delaney G.P.
        • Holloway L.C.
        • Jameson M.G.
        • Papadatos G.
        • et al.
        Interobserver variability in clinical target volume delineation in tangential breast irradiation: a comparison between radiation oncologists and radiation therapists.
        Clin Oncol (R Coll Radiol). 2011; 23: 108-113https://doi.org/10.1016/j.clon.2010.10.004
        • Velker V.M.
        • Rodrigues G.B.
        • Dinniwell R.
        • Hwee J.
        • Louie A.V.
        Creation of RTOG compliant patient CT-atlases for automated atlas based contouring of local regional breast and high-risk prostate cancers.
        Radiat Oncol. 2013 Jul; 25: 188https://doi.org/10.1186/1748-717X-8-188
        • Stanley J.
        • Dunscombe P.
        • Lau H.
        • Burns P.
        • Lim G.
        • Liu H.-W.
        • et al.
        The effect of contouring variability on dosimetric parameters for brain metastases treated with stereotactic radiosurgery.
        Int J Radiat Oncol Biol Phys. 2013; 87: 924-931https://doi.org/10.1016/j.ijrobp.2013.09.013
        • Rasch C.
        • Eisbruch A.
        • Remeijer P.
        • Bos L.
        • Hoogeman M.
        • van Herk M.
        • et al.
        Irradiation of paranasal sinus tumors, a delineation and dose comparison study.
        Int J Radiat Oncol Biol Phys. 2002; 52: 120-127
        • Reed V.K.
        • Cavalcanti J.L.
        • Strom E.A.
        • Perkins G.H.
        • Oh J.L.
        • Tereffe W.
        • et al.
        Risk of subclinical micrometastatic disease in the supraclavicular nodal bed according to the anatomic distribution in patients with advanced breast cancer.
        Int J Radiat Oncol Biol Phys. 2008; 71: 435-440https://doi.org/10.1016/j.ijrobp.2007.10.025
        • Van der Veen J.
        • Gulyban A.
        • Nuyts S.
        Interobserver variability in delineation of target volumes in head and neck cancer.
        Radiother Oncol. 2019 Aug; 137 (Epub 2019 Apr 29 PMID:31048235): 9-15https://doi.org/10.1016/j.radonc.2019.04.006
        • Reed V.K.
        • Woodward W.A.
        • Zhang L.
        • Strom E.A.
        • Perkins G.H.
        • Tereffe W.
        • et al.
        Automatic segmentation of whole breast using atlas approach and deformable image registration.
        Int J Radiat Oncol Biol Phys. 2009; 73: 1493-1500https://doi.org/10.1016/j.ijrobp.2008.07.001
        • Chen G.-P.
        • Liu F.
        • White J.
        • Vicini F.A.
        • Freedman G.M.
        • Arthur D.W.
        • et al.
        A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer.
        Medical Dosimetry. 2015; 40: 21-25
        • Xu Y.
        • Wang J.
        • Hu Z.
        • Tian Y.
        • Ma P.
        • Li S.
        • et al.
        Locoregional irradiation including internal mammary nodal region for left-sided breast cancer after breast conserving surgery: Dosimetric evaluation of 4 techniques.
        Medical Dosimetry. 2019; 44: e13-e18
        • Wang J.
        • Yang Z.
        • Hu W.
        • Chen Z.
        • Yu X.
        • Guo X.
        Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.
        Oncotarget. 2017; 8: 33276-33284https://doi.org/10.18632/oncotarget.16634
        • Ma J.
        • Li J.
        • Xie J.
        • Chen J.
        • Zhu C.
        • Cai G.
        • et al.
        Post mastectomy linac IMRT irradiation of chest wall and regional nodes: dosimetry data and acute toxicities.
        Radiat Oncol. 2013; 8https://doi.org/10.1186/1748-717X-8-81
        • Dumane V.A.
        • Bakst R.
        • Green S.
        • Zhang Q.
        Dose to organs in the supraclavicular region when covering the Internal Mammary Nodes (IMNs) in breast cancer patients: A comparison of Volumetric Modulated Arc Therapy (VMAT) versus 3D and VMAT.
        PLoS One. 2018 Oct 19; 13: e0205770https://doi.org/10.1371/journal.pone.0205770
        • Kong F.-M.
        • Ritter T.
        • Quint D.J.
        • Senan S.
        • Gaspar L.E.
        • Komaki R.U.
        • et al.
        Consideration of Dose Limits for Organs at Risk of Thoracic Radiotherapy: Atlas for Lung, Proximal Bronchial Tree, Esophagus, Spinal Cord, Ribs, and Brachial Plexus.
        International Journal of Radiation Oncology*Biology*Physics. 2011; 81: 1442-1457
        • Donker M.
        • van Tienhoven G.
        • Straver M.E.
        • Meijnen P.
        • van de Velde C.J.H.
        • Mansel R.E.
        • et al.
        Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial.
        The Lancet Oncology. 2014; 15: 1303-1310
        • Poortmans P.M.
        • Collette S.
        • Kirkove C.
        • Van Limbergen E.
        • Budach V.
        • Struikmans H.
        • et al.
        Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer.
        N Engl J Med. 2015; 373: 317-327
        • Whelan T.J.
        • Olivotto I.A.
        • Parulekar W.R.
        • Ackerman I.
        • Chua B.H.
        • Nabid A.
        • et al.
        Regional Nodal Irradiation in Early-Stage Breast Cancer.
        N Engl J Med. 2015; 373: 307-316
        • Leif J.L.
        • Nguyen H.
        • Tailor A.T.
        • Galvin J.M.
        • Followill D.S.
        • Kiniry D.
        • et al.
        An Update of the Credentialing Process for the NRG Oncology NSABP B-51 / RTOG 1304 Phase 3 Randomized Clinical Trial, Int J Radiat Oncol Biol Phys, 93: 3.
        Supplement. 2015; 93: E570https://doi.org/10.1016/j.ijrobp.2015.07.2006
        • Anders L.C.
        • Stieler F.
        • Siebenlist K.
        • Schäfer J.
        • Lohr F.
        • Wenz F.
        Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer.
        Radiother Oncol. 2012 Jan; 102 (Epub 2011 Sep 30): 68-73https://doi.org/10.1016/j.radonc.2011.08.043
        • Isambert A.
        • Dhermain F.
        • Bidault F.
        • Commowick O.
        • Bondiau P.-Y.
        • Malandain G.
        • et al.
        Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context.
        Radiother Oncol. 2008; 87: 93-99
        • Leonardi M.C.
        • Ricotti R.
        • Dicuonzo S.
        • Cattani F.
        • Morra A.
        • Dell'Acqua V.
        • et al.
        From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.
        Breast. 2016; 29: 213-222https://doi.org/10.1016/j.breast.2016.07.010
        • Lobefalo F.
        • Bignardi M.
        • Reggiori G.
        • Tozzi A.
        • Tomatis S.
        • Alongi F.
        • et al.
        Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case.
        Radiat Oncol. 2013; 8https://doi.org/10.1186/1748-717X-8-176
        • Eminowicz G.
        • Rompokos V.
        • Stacey C.
        • McCormack M.
        The dosimetric impact of target volume delineation variation for cervical cancer radiotherapy.
        Radiother Oncol. 2016 Sep; 120 (Epub 2016 May 6PMID:27162158): 493-499https://doi.org/10.1016/j.radonc.2016.04.028
        • Borm K.J.
        • Kessel K.
        • Devecka M.
        • Muench S.
        • Straube C.
        • Schiller K.
        • et al.
        Variability in lymph node irradiation in patients with breast cancer-results from a multi-center survey in German-speaking countries.
        Strahlenther Onkol. 2020; 196: 15-22https://doi.org/10.1007/s00066-019-01537-3
        • Liengsawangwong R.
        • Yu T.-K.
        • Sun T.-L.
        • Erasmus J.J.
        • Perkins G.H.
        • Tereffe W.
        • et al.
        Treatment optimization using computed tomography-delineated targets should be used for supraclavicular irradiation for breast cancer.
        Int J Radiat Oncol Biol Phys. 2007; 69: 711-715
      2. V. Lancellotta M. Iacco E. Perrucci L. Falcinelli C. Zucchetti B. de Bari et al. Comparing four radiotherapy techniques for treating the chest wall plus levels III–IV draining nodes after breast reconstruction BJR 20160874 10.1259/bjr.20160874

        • Orecchia R.
        • Rojas D.P.
        • Cattani F.
        • Ricotti R.
        • Santoro L.
        • Morra A.
        • et al.
        Hypofractionated postmastectomy radiotherapy with helical tomotherapy in patients with immediate breast reconstruction: dosimetric results and acute/intermediate toxicity evaluation.
        Med Oncol. 2018; 35https://doi.org/10.1007/s12032-018-1095-6
        • Koh V.
        • Tang J.I.
        • Choo B.A.
        • Tan C.W.
        • Lim B.K.
        • Shen L.
        • et al.
        Body mass index and patient CT measurements as a predictor of benefit of intensity-modulated radiotherapy to the supraclavicular fossa.
        Onco Targets Ther. 2013 Nov; 21: 1701-1706https://doi.org/10.2147/OTT.S49864
        • Fontanilla H.P.
        • Woodward W.A.
        • Lindberg M.E.
        • Kanke J.E.
        • Arora G.
        • Durbin R.R.
        • et al.
        Current clinical coverage of Radiation Therapy Oncology Group-defined target volumes for postmastectomy radiation therapy.
        Practical Radiation Oncology. 2012; 2: 201-209
        • Adra J.
        • Lundstedt D.
        • Killander F.
        • Holmberg E.
        • Haghanegi M.
        • Kjellén E.
        • et al.
        Distribution of Locoregional Breast Cancer Recurrence in Relation to Postoperative Radiation Fields and Biological Subtypes.
        Int J Radiat Oncol Biol Phys. 2019; 105: 285-295https://doi.org/10.1016/j.ijrobp.2019.06.013
        • Borm K.J.
        • Voppichler J.
        • Düsberg M.
        • Oechsner M.
        • Vag T.
        • Weber W.
        • et al.
        FDG/PET-CT-Based Lymph Node Atlas in Breast Cancer Patients.
        Int J Radiat Oncol Biol Phys. 2019; 103: 574-582https://doi.org/10.1016/j.ijrobp.2018.07.2025