Predicted probabilities of brain injury after carbon ion radiotherapy for head and neck and skull base tumors in long-term survivors

Published:October 26, 2021DOI:https://doi.org/10.1016/j.radonc.2021.10.017

      Highlights

      • Carbon ion radiotherapy (CIRT) is useful to treat head and neck tumors.
      • Radiation-induced brain injury (RIBI) is an adverse effect of irradiation.
      • The tolerance dose of the brain in CIRT is unclear.
      • Risk factors for RIBI in long-term survivors following CIRT were determined.
      • CIRT variables were used to generate a probability profile for RIBI treatment.

      Abstract

      Background and purpose

      We aimed to determine the risk factors for radiation-induced brain injury (RIBI
      Abbreviations: RIBI, radiation-induced brain injury; CIRT, carbon ion radiotherapy; HNC/SBT, head and neck cancers and skull base tumors; AE, adverse event; DVH, dose volume histogram; LQ, linear–quadratic; MRI, magnetic resonance imaging; CT, computed tomography; GTV, gross tumor volume; CTV, clinical target volume; OAR, organs at risk; RBE, relative biological effectiveness; CTCAE, Common Terminology Criteria for Adverse Events; EUD, equivalent uniform dose; AIC, Akaike Information Criterion; SOBP, Spread-Out Bragg Peak; IMRT, intensity-modulated radiotherapy
      1Abbreviations: RIBI, radiation-induced brain injury; CIRT, carbon ion radiotherapy; HNC/SBT, head and neck cancers and skull base tumors; AE, adverse event; DVH, dose volume histogram; LQ, linear–quadratic; MRI, magnetic resonance imaging; CT, computed tomography; GTV, gross tumor volume; CTV, clinical target volume; OAR, organs at risk; RBE, relative biological effectiveness; CTCAE, Common Terminology Criteria for Adverse Events; EUD, equivalent uniform dose; AIC, Akaike Information Criterion; SOBP, Spread-Out Bragg Peak; IMRT, intensity-modulated radiotherapy
      ) after carbon ion radiotherapy (CIRT) to predict their probabilities in long-term survivors.

      Materials and methods

      We evaluated 104 patients with head, neck, and skull base tumors who underwent CIRT in a regimen of 32 fractions and were followed up for at least 24 months. RIBI was assessed using the Common Terminology Criteria for Adverse Events.

      Results

      The median follow-up period was 45.5 months; 19 (18.3 %) patients developed grade ≥2 RIBI. The maximal absolute dose covering 5 mL of the brain (D5ml) was the only significant risk factor for grade ≥2 RIBI in the multivariate logistic regression analysis (p = 0.001). The tolerance doses of D5ml for the 5% and 50% probabilities of developing grade ≥2 RIBI were estimated to be 55.4 Gy (relative biological effectiveness [RBE]) and 68.4 Gy (RBE) by a logistic model, respectively.

      Conclusion

      D5ml was most significantly associated with grade ≥2 RIBI and may enable the prediction of its probability.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Caudell J.J.
        • Torres-Roca J.F.
        • Gillies R.J.
        • Enderling H.
        • Kim S.
        • Rishi A.
        • et al.
        The future of personalised radiotherapy for head and neck cancer.
        Lancet Oncol. 2017; 18: e266-e273
        • Noel G.
        • Gondi V.
        Proton therapy for tumors of the base of the skull.
        Chin Clin Oncol. 2016; 5: 51
        • Siddiqui F.
        • Movsas B.
        Management of radiation toxicity in head and neck cancers.
        Semin Radiat Oncol. 2017; 27: 340-349
        • Laramore G.E.
        • Griffith J.T.
        • Boespflug M.
        • Pelton J.G.
        • Griffin T.
        • Griffin B.R.
        • et al.
        Fast neutron radiotherapy for sarcomas of soft tissue, bone, and cartilage.
        Am J Clin Oncol. 1989; 12: 320-326
        • Kamada T.
        • Tsujii H.
        • Blakely E.A.
        • Debus J.
        • De Neve W.
        • Durante M.
        • et al.
        Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience.
        Lancet Oncol. 2015; 16: e93-e100
        • Schulz-Ertner D.
        • Tsujii H.
        Particle radiation therapy using proton and heavier ion beams.
        J Clin Oncol. 2007; 25: 953-964
        • Chao S.T.
        • Ahluwalia M.S.
        • Barnett G.H.
        • Stevens G.H.J.
        • Murphy E.S.
        • Stockham A.L.
        • et al.
        Challenges with the diagnosis and treatment of cerebral radiation necrosis.
        Int J Radiat Oncol Biol Phys. 2013; 87: 449-457
        • Miyawaki D.
        • Murakami M.
        • Demizu Y.
        • Sasaki R.
        • Niwa Y.
        • Terashima K.
        • et al.
        Brain injury after proton therapy or carbon ion therapy for head-and-neck cancer and skull base tumors.
        Int J Radiat Oncol Biol Phys. 2009; 75: 378-384
        • Koto M.
        • Hasegawa A.
        • Takagi R.
        • Fujikawa A.
        • Morikawa T.
        • Kishimoto R.
        • et al.
        Risk factors for brain injury after carbon ion radiotherapy for skull base tumors.
        Radiother Oncol. 2014; 111: 25-29
        • Fowler J.F.
        The first James Kirk memorial lecture. What next in fractionated radiotherapy?.
        Br J Cancer Suppl. 1984; 6: 285-300
        • Kanai T.
        • Endo M.
        • Minohara S.
        • Miyahara N.
        • Koyama-ito H.
        • Tomura H.
        • et al.
        Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.
        Int J Radiat Oncol Biol Phys. 1999; 44: 201-210
        • Kagawa K.
        • Murakami M.
        • Hishikawa Y.
        • Abe M.
        • Akagi T.
        • Yanou T.
        • et al.
        Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center.
        Int J Radiat Oncol Biol Phys. 2002; 54: 928-938
        • Rangel A.
        • Dunscombe P.
        Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC.
        Med Phys. 2009; 36: 3304-3309
        • Niyazi M.
        • Niemierko A.
        • Paganetti H.
        • Söhn M.
        • Schapira E.
        • Goldberg S.
        • et al.
        Volumetric and actuarial analysis of brain necrosis in proton therapy using a novel mixture cure model.
        Radiother Oncol. 2020; 142: 154-161
        • Schlampp I.
        • Karger C.P.
        • Jäkel O.
        • Scholz M.
        • Didinger B.
        • Nikoghosyan A.
        • et al.
        Temporal lobe reactions after radiotherapy with carbon ions: incidence and estimation of the relative biological effectiveness by the local effect model.
        Int J Radiat Oncol Biol Phys. 2011; 80: 815-823
        • Gillmann C.
        • Lomax A.J.
        • Weber D.C.
        • Jakel O.
        • Karger C.P.
        Dose-response curves for MRI-detected radiation-induced temporal lobe reactions in patients after proton and carbon ion therapy: Does the same RBE-weighted dose lead to the same biological effect?.
        Radiother Oncol. 2018; 128: 109-114
        • Su S.F.
        • Huang S.M.
        • Han F.
        • Huang Y.
        • Chen C.Y.
        • Xiao W.W.
        • et al.
        Analysis of dosimetric factors associated with temporal lobe necrosis (TLN) in patients with nasopharyngeal carcinoma (NPC) after intensity modulated radiotherapy.
        Radiat Oncol. 2013; 8: 17
        • Pehlivan B.
        • Ares C.
        • Lomax A.J.
        • Stadelmann O.
        • Goitein G.
        • Timmermann B.
        • et al.
        Temporal lobe toxicity analysis after proton radiation therapy for skull base tumors.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1432-1440
        • Kumar A.J.
        • Leeds N.E.
        • Fuller G.N.
        • Van Tassel P.
        • Maor M.H.
        • Sawaya R.E.
        • et al.
        Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment.
        Radiology. 2000; 217: 377-384
        • Sulaiman N.S.
        • Demizu Y.
        • Koto M.
        • Saitoh J.-I.
        • Suefuji H.
        • Tsuji H.
        • et al.
        Multicenter study of carbon-ion radiation therapy for adenoid cystic carcinoma of the head and neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN).
        Int J Radiat Oncol Biol Phys. 2018; 100: 639-646
        • Saitoh J.-I.
        • Koto M.
        • Demizu Y.
        • Suefuji H.
        • Ohno T.
        • Tsuji H.
        • et al.
        A multicenter study of carbon-ion radiation therapy for head and neck adenocarcinoma.
        Int J Radiat Oncol Biol Phys. 2017; 99: 442-449
        • Lu V.M.
        • O’Connor K.P.
        • Mahajan A.
        • Carlson M.L.
        • Van Gompel J.J.
        Carbon ion radiotherapy for skull base chordomas and chondrosarcomas: a systematic review and meta-analysis of local control, survival, and toxicity outcomes.
        J Neurooncol. 2020; 147: 503-513
        • Shirai K.
        • Saitoh J.-I.
        • Musha A.
        • Abe T.
        • Kobayashi D.
        • Takahashi T.
        • et al.
        Prospective observational study of carbon-ion radiotherapy for non-squamous cell carcinoma of the head and neck.
        Cancer Sci. 2017; 108: 2039-2044
        • Schultheiss T.E.
        • Kun L.E.
        • Ang K.K.
        • Stephens L.C.
        Radiation response of the central nervous system.
        Int J Radiat Oncol Biol Phys. 1995; 31: 1093-1112
        • Rabin B.M.
        • Meyer J.R.
        • Berlin J.W.
        • Marymount M.H.
        • Palka P.S.
        • Russell E.J.
        Radiation-induced changes in the central nervous system and head and neck.
        RadioGraphics. 1996; 16: 1055-1072
        • Valk P.E.
        • Dillon W.P.
        Radiation injury of the brain.
        AJNR Am J Neuroradiol. 1991; 12: 45-62
        • Wang Y.-X.
        • King A.D.
        • Zhou H.
        • Leung S.-F.
        • Abrigo J.
        • Chan Y.-L.
        • et al.
        Evolution of radiation-induced brain injury: MR imaging-based study.
        Radiology. 2010; 254: 210-218
        • Shah R.
        • Vattoth S.
        • Jacob R.
        • Manzil F.F.P.
        • O’Malley J.P.
        • Borghei P.
        • et al.
        Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence.
        Radiographics. 2012; 32: 1343-1359
        • Uzawa A.
        • Ando K.
        • Koike S.
        • Furusawa Y.
        • Matsumoto Y.
        • Takai N.
        • et al.
        Comparison of biological effectiveness of carbon-ion beams in Japan and Germany.
        Int J Radiat Oncol Biol Phys. 2009; 73: 1545-1551
        • Lawrence Y.R.
        • Li X.A.
        • el Naqa I.
        • Hahn C.A.
        • Marks L.B.
        • Merchant T.E.
        • et al.
        Radiation dose-volume effects in the brain.
        Int J Radiat Oncol Biol Phys. 2010; 76: S20-S27
        • Ruben J.D.
        • Dally M.
        • Bailey M.
        • Smith R.
        • McLean C.A.
        • Fedele P.
        Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy.
        Int J Radiat Oncol Biol Phys. 2006; 65: 499-508
        • Lee A.W.M.
        • Kwong D.L.W.
        • Leung S.-F.
        • Tung S.Y.
        • Sze W.-M.
        • Sham J.S.T.
        • et al.
        Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time.
        Int J Radiat Oncol Biol Phys. 2002; 53: 75-85
        • Lee A.W.M.
        • Foo W.
        • Chappell R.
        • Fowler J.F.
        • Sze W.M.
        • Poon Y.F.
        • et al.
        Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma.
        Int J Radiat Oncol Biol Phys. 1998; 40: 35-42
        • Santoni R.
        • Liebsch N.
        • Finkelstein D.
        • Hug E.
        • Hanssens P.
        • Goitein M.
        • et al.
        Temporal lobe (TL) damage following surgery and high-dose photon and proton irradiation in 96 patients affected by chordomas and chondrosarcomas of the base of the skull.
        Int J Radiat Oncol Biol Phys. 1998; 41: 59-68
        • Tye K.
        • Engelhard H.H.
        • Slavin K.V.
        • Nicholas M.K.
        • Chmura S.J.
        • Kwok Y.
        • et al.
        An analysis of radiation necrosis of the central nervous system treated with bevacizumab.
        J Neurooncol. 2014; 117: 321-327
        • Qi J.
        • Wang J.J.
        • Duan J.L.
        • Lu Z.Y.
        • Yuan Y.G.
        Leonurine improves age-dependent impaired angiogenesis: possible involvement of mitochondrial function and HIF-1α dependent VEGF activation.
        Front Pharmacol. 2017; 8
        • Santacroce A.
        • Kamp M.A.
        • Budach W.
        • Hänggi D.
        Radiobiology of radiosurgery for the central nervous system.
        Biomed Res Int. 2013; 2013: 362761
        • McDonald M.W.
        • Linton O.R.
        • Calley C.S.J.
        Dose-volume relationships associated with temporal lobe radiation necrosis after skull base proton beam therapy.
        Int J Radiat Oncol Biol Phys. 2015; 91: 261-267
        • Djajaputra D.
        • Wu Q.
        On relating the generalized equivalent uniform dose formalism to the linear-quadratic model.
        Med Phys. 2006; 33: 4481-4489
        • Ahmed S.K.
        • Brown P.D.
        • Foote R.L.
        Protons vs photons for brain and skull base tumors.
        Semin Radiat Oncol. 2018; 28: 97-107
        • Fossati P.
        • Matsufuji N.
        • Kamada T.
        • Karger C.P.
        Radiobiological issues in prospective carbon ion therapy trials.
        Med Phys. 2018; 45: e1096-e1110