Original Article| Volume 161, P140-147, August 2021

Download started.


Effects of the DRD2/3 antagonist ONC201 and radiation in glioblastoma


      • Combined treatment of ONC201 and radiation exhibits anti-tumor effects on cells from primary and recurrent GBM.
      • Combined treatment significantly prolongs survival in vivo.
      • Combined treatment potentially targets the quiescent GBM cell population.



      Glioblastoma (GBM) is the deadliest of all brain cancers in adults. The current standard-of-care is surgery followed by radiotherapy and temozolomide, leading to a median survival time of only 15 months. GBM are organized hierarchically with a small number of glioma-initiating cells (GICs), responsible for therapy resistance and tumor recurrence, suggesting that targeting GICs could improve treatment response. ONC201 is a first-in-class anti-tumor agent with clinical efficacy in some forms of high-grade gliomas. Here we test its efficacy against GBM in combination with radiation.


      Using patient-derived GBM lines and mouse models of GBM we test the effects of radiation and ONC201 on GBM self -renewal in vitro and survival in vivo.A possible resistance mechanism is investigated using RNA-Sequencing.


      Treatment of GBM cells with ONC201 reduced self-renewal, clonogenicity and cell viability in vitro. ONC201 exhibited anti-tumor effects on radioresistant GBM cells indicated by reduced self-renewal in secondary and tertiary glioma spheres. Combined treatment of ONC201 and radiation prolonged survival in syngeneic and patient-derived orthotopic xenograft mouse models of GBM. Subsequent transcriptome analyses after combined treatment revealed shifts in gene expression signatures related to quiescent GBM populations, GBM plasticity, and GBM stem cells.


      Our findings suggest that combined treatment with the DRD2/3 antagonist ONC201 and radiation improves the efficacy of radiation against GBM in vitroand in vivothrough suppression of GICs without increasing toxicity in mouse models of GBM. A clinical assessment of this novel combination therapy against GBM is further warranted.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Laperriere N.
        • Zuraw L.
        • Cairncross G.
        Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review.
        Radiother Oncol. 2002; 64: 259-273
        • Chan J.L.
        • Lee S.W.
        • Fraass B.A.
        • Normolle D.P.
        • Greenberg H.S.
        • Junck L.R.
        • et al.
        Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy.
        J Clin Oncol. 2002; 20: 1635-1642
        • Osuka S.
        • Van Meir E.G.
        Overcoming therapeutic resistance in glioblastoma: the way forward.
        J Clin Invest. 2017; 127: 415-426
        • Dirkse A.
        • Golebiewska A.
        • Buder T.
        • Nazarov P.V.
        • Muller A.
        • Poovathingal S.
        • et al.
        Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment.
        Nat Commun. 2019; 10: 1787
        • Auffinger B.
        • Spencer D.
        • Pytel P.
        • Ahmed A.U.
        • Lesniak M.S.
        The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence.
        Expert Rev Neurother. 2015; 15: 741-752
        • Shergalis A.
        • Bankhead A.
        • Luesakul U.
        • Muangsin N.
        • Neamati N.
        • Barker E.L.
        Current challenges and opportunities in treating glioblastoma.
        Pharmacol Rev. 2018; 70: 412-445
        • Dréan A.
        • Goldwirt L.
        • Verreault M.
        • Canney M.
        • Schmitt C.
        • Guehennec J.
        • et al.
        Blood-brain barrier, cytotoxic chemotherapies and glioblastoma.
        Expert Rev Neurother. 2016; 16: 1285-1300
        • Laquintana V.
        • Trapani A.
        • Denora N.
        • Wang F.
        • Gallo J.M.
        • Trapani G.
        New strategies to deliver anticancer drugs to brain tumors.
        Expert Opin Drug Deliv. 2009; 6: 1017-1032
        • Wang D.
        • Wang C.
        • Wang L.
        • Chen Y.
        A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment.
        Drug Deliv. 2019; 26: 551-565
        • Allen J.E.
        • Krigsfeld G.
        • Mayes P.A.
        • Patel L.
        • Dicker D.T.
        • Patel A.S.
        • et al.
        Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects.
        Sci Transl Med. 2013; 5: 171ra17
        • Allen J.E.
        • Krigsfeld G.
        • Patel L.
        • Mayes P.
        • Dicker D.
        • Wu G.
        • et al.
        Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway.
        Mol Cancer. 2015; 14: 99
        • Arrillaga-Romany I.
        • Odia Y.
        • Prabhu V.V.
        • Tarapore R.S.
        • Merdinger K.
        • Stogniew M.
        • et al.
        Biological activity of weekly ONC201 in adult recurrent glioblastoma patients.
        Neuro Oncol. 2020; 22: 94-102
        • Arrillaga-Romany I.
        • Chi A.S.
        • Allen J.E.
        • Oster W.
        • Wen P.Y.
        • Batchelor T.T.
        A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma.
        Oncotarget. 2017; 8: 79298-79304
        • Stein M.N.
        • Malhotra J.
        • Tarapore R.S.
        • Malhotra U.
        • Silk A.W.
        • Chan N.
        • et al.
        Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration.
        J Immunother Cancer. 2019; 7: 136
        • Prabhu V.V.
        • Talekar M.K.
        • Lulla A.R.
        • Kline C.L.B.
        • Zhou L.
        • Hall J.
        • et al.
        Single agent and synergistic combinatorial efficacy of first-in-class small molecule imipridone ONC201 in hematological malignancies.
        Cell Cycle. 2018; 17: 468-478
        • Stein M.N.
        • Bertino J.R.
        • Kaufman H.L.
        • Mayer T.
        • Moss R.
        • Silk A.
        • et al.
        First-in-Human Clinical Trial of Oral ONC201 in patients with refractory solid tumors.
        Clin Cancer Res. 2017; 23: 4163-4169
        • Hall M.D.
        • Odia Y.
        • Allen J.E.
        • Tarapore R.
        • Khatib Z.
        • Niazi T.N.
        • et al.
        First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report.
        J Neurosurg Pediatr. 2019; 23: 719-725
        • Chi A.S.
        • Tarapore R.S.
        • Hall M.D.
        • Shonka N.
        • Gardner S.
        • Umemura Y.
        • et al.
        Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201.
        J Neurooncol. 2019; 145: 97-105
        • Romaguera J.E.
        • Lee H.J.
        • Tarapore R.
        • Prabhu V.
        • Allen J.
        • Schalop L.
        • et al.
        Integrated stress response and immune cell infiltration in an ibrutinib-refractory mantle cell lymphoma patient following ONC201 treatment.
        Br J Haematol. 2019; 185: 133-136
        • Hemmati H.D.
        • Nakano I.
        • Lazareff J.A.
        • Masterman-Smith M.
        • Geschwind D.H.
        • Bronner-Fraser M.
        • et al.
        Cancerous stem cells can arise from pediatric brain tumors.
        Proc Natl Acad Sci U S A. 2003; 100: 15178-15183
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • Squire J.A.
        • Bayani J.
        • Hide T.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Bao S.
        • Wu Q.
        • McLendon R.E.
        • Hao Y.
        • Shi Q.
        • Hjelmeland A.B.
        • et al.
        Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.
        Nature. 2006; 444: 756-760
        • Eramo A.
        • Ricci-Vitiani L.
        • Zeuner A.
        • Pallini R.
        • Lotti F.
        • Sette G.
        • et al.
        Chemotherapy resistance of glioblastoma stem cells.
        Cell Death Differ. 2006; 13: 1238-1241
        • Matarredona E.R.
        • Pastor A.M.
        Extracellular vesicle-mediated communication between the glioblastoma and its microenvironment.
        Cells. 2019; 9
        • Tejero R.
        • Huang Y.
        • Katsyv I.
        • Kluge M.
        • Lin J.-Y.
        • Tome-Garcia J.
        • et al.
        Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.
        EBioMedicine. 2019; 42: 252-269
        • Moore N.
        • Lyle S.
        Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance.
        J Oncol. 2011; 2011: 1-11
        • Gasch C.
        • et al.
        Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention.
        Mol Cancer. 2017; 16: 43
        • Ahmed A.U.
        • Auffinger B.
        • Lesniak M.S.
        Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies.
        Expert Rev Neurother. 2013; 13: 545-555
        • Cerami E.
        • et al.
        The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
        Cancer Discov. 2012; 2: 401-404
        • Gao J.
        • Aksoy B.A.
        • Dogrusoz U.
        • Dresdner G.
        • Gross B.
        • Sumer S.O.
        • et al.
        Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
        Sci Signal. 2013; 6: pl1
        • Ishizawa J.o.
        • Zarabi S.F.
        • Davis R.E.
        • Halgas O.
        • Nii T.
        • Jitkova Y.
        • et al.
        Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality.
        Cancer Cell. 2019; 35: 721-737.e9
        • Lathia J.D.
        • Mack S.C.
        • Mulkearns-Hubert E.E.
        • Valentim C.L.L.
        • Rich J.N.
        Cancer stem cells in glioblastoma.
        Genes Dev. 2015; 29: 1203-1217
        • Pastrana E.
        • Silva-Vargas V.
        • Doetsch F.
        Eyes wide open: a critical review of sphere-formation as an assay for stem cells.
        Cell Stem Cell. 2011; 8: 486-498
        • Bhat K.
        • Saki M.
        • Vlashi E.
        • Cheng F.
        • Duhachek-Muggy S.
        • Alli C.
        • et al.
        The dopamine receptor antagonist trifluoperazine prevents phenotype conversion and improves survival in mouse models of glioblastoma.
        Proc Natl Acad Sci U S A. 2020; 117: 11085-11096
      1. Fernandes, C., et al., Current standards of care in glioblastoma therapy, in Glioblastoma, S. De Vleeschouwer, Editor. 2017: Brisbane (AU).

        • Harder B.G.
        • et al.
        Developments in blood-brain barrier penetrance and drug repurposing for improved treatment of glioblastoma.
        Front Oncol. 2018; 8: 462
        • Lemée J.-M.
        • Clavreul A.
        • Menei P.
        Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone.
        Neuro Oncol. 2015; 17: 1322-1332
        • Goffart N.
        • Kroonen J.
        • Rogister B.
        Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment.
        Cancers (Basel). 2013; 5: 1049-1071
        • Ikushima H.
        • et al.
        Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors.
        Cell Stem Cell. 2009; 5: 504-514
        • Niibori-Nambu A.
        • et al.
        Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin alphaV.
        PLoS ONE. 2013; 8e59558
        • Caragher S.P.
        • Shireman J.M.
        • Huang M.
        • Miska J.
        • Atashi F.
        • Baisiwala S.
        • et al.
        Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma.
        J Neurosci. 2019; 39: 1982-1993
        • Li Y.
        • Wang W.
        • Wang F.
        • Wu Q.
        • Li W.
        • Zhong X.
        • et al.
        Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells.
        J Mol Cell Biol. 2017; 9: 302-314
        • Prabhu V.V.
        • Lulla A.R.
        • Madhukar N.S.
        • Ralff M.D.
        • Zhao D.
        • Kline C.L.B.
        • et al.
        Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors.
        PLoS ONE. 2017; 12: e0180541