Advertisement

Idiopathic pulmonary fibrosis: Current knowledge, future perspectives and its importance in radiation oncology

  • Görkem Türkkan
    Correspondence
    Corresponding author: Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands. Department of Radiation Oncology, Muğla Sıtkı Koçman University Medical Faculty, Kötekli, Aydın-Muğla Yolu No:43, 48000, Muğla, Turkey.
    Affiliations
    Department of Radiation Oncology, MAASTRO Clinic, Maastricht University Medical Center+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Yves Willems
    Affiliations
    Department of Radiation Oncology, MAASTRO Clinic, Maastricht University Medical Center+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Lizza E.L. Hendriks
    Affiliations
    Department of Pulmonary Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Rémy Mostard
    Affiliations
    Department of Respiratory Medicine, Zuyderland Medical Center Heerlen-Sittard, The Netherlands
    Search for articles by this author
  • Lennart Conemans
    Affiliations
    Department of Pulmonary Diseases, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Hester A Gietema
    Affiliations
    Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Cristina Mitea
    Affiliations
    Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Stéphanie Peeters
    Affiliations
    Department of Radiation Oncology, MAASTRO Clinic, Maastricht University Medical Center+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
  • Dirk De Ruysscher
    Affiliations
    Department of Radiation Oncology, MAASTRO Clinic, Maastricht University Medical Center+, Maastricht, The Netherlands

    GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
    Search for articles by this author
Published:November 24, 2020DOI:https://doi.org/10.1016/j.radonc.2020.11.020

      Highlights

      • Idiopathic pulmonary fibrosis (IPF) has a poor prognosis.
      • IPF and radiation induced lung injury share many similarities in pathogenesis.
      • IPF increases complication risk in patients receiving thoracic radiotherapy.
      • Multidisciplinary evaluation is required regarding thoracic radiotherapy for patients with IPF.
      • Proton beam therapy seems to be a safer thoracic radiotherapy technique for patients with IPF.

      Abstract

      Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic lung disease with an unknown cause. Uncertainties still remain regarding the pathogenesis of IPF, and the prognosis of this disease is poor despite some recent improvements in treatment. Radiation induced lung injury (RILI) is a common complication and a dose-limiting toxicity of thoracic radiotherapy. Importantly, IPF is a crucial risk factor for pulmonary toxicity after thoracic radiotherapy. Although IPF is not universally accepted as a definite contraindication for thoracic radiotherapy at present, it has been shown that IPF can increase the risk of severe and fatal complications after thoracic radiotherapy. Proton beam therapy has shown promising results in reducing the incidence of thoracic radiotherapy related life-threatening complications in IPF patients, but the current evidence is not sufficient to recommend the standard use of it. Many similarities are noticeable between IPF and RILI in terms of pathogenesis and underlying mechanisms. Better understanding of the mechanisms of IPF and RILI may enable clinicians to provide safer and more effective thoracic radiotherapy treatments in cancer patients with IPF. In this review, we summarize the current knowledge of IPF, present the importance of IPF in radiation oncology practice, and highlight the similarities and relationship between IPF and RILI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hutchinson J.
        • Fogarty A.
        • Hubbard R.
        • McKeever T.
        Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review.
        Eur Respir J. 2015; 46: 795-806https://doi.org/10.1183/09031936.00185114
        • Fernández Pérez E.R.
        • Daniels C.E.
        • St. Sauver J.
        • Hartman T.E.
        • Bartholmai B.J.
        • Yi E.S.
        • Ryu J.H.
        • Schroeder D.R.
        Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis.
        Chest. 2010; 137: 129-137https://doi.org/10.1378/chest.09-1002
        • Raghu G.
        • Chen S.-Y.
        • Yeh W.-S.
        • Maroni B.
        • Li Q.
        • Lee Y.-C.
        • Collard H.R.
        Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–11.
        Lancet Respir Med. 2014; 2: 566-572https://doi.org/10.1016/S2213-2600(14)70101-8
        • Raghu G.
        • Amatto V.C.
        • Behr J.
        • Stowasser S.
        Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review.
        Eur Respir J. 2015; 46: 1113-1130https://doi.org/10.1183/13993003.02316-2014
        • Brown S.-A.
        • Dobelle M.
        • Padilla M.
        • Agovino M.
        • Wisnivesky J.P.
        • Hashim D.
        • Boffetta P.
        Idiopathic pulmonary fibrosis and lung cancer. a systematic review and meta-analysis.
        Annals ATS. 2019; 16: 1041-1051https://doi.org/10.1513/AnnalsATS.201807-481OC
        • Giuranno L.
        • Ient J.
        • De Ruysscher D.
        • Vooijs M.A.
        Radiation-induced lung injury (RILI).
        Front Oncol. 2019; 9: 877
        • Lee Y.H.
        • Kim Y.S.
        • Lee S.N.
        • Lee H.C.
        • Oh S.J.
        • Kim S.J.
        • Kim Y.K.
        • Han D.H.
        • Yoo I.R.
        • Kang J.H.
        • Hong S.H.
        Interstitial lung change in pre-radiation therapy computed tomography is a risk factor for severe radiation pneumonitis.
        Cancer Res Treat. 2015; 47: 676-686https://doi.org/10.4143/crt.2014.180
        • Ueki N.
        • Matsuo Y.
        • Togashi Y.
        • Kubo T.
        • Shibuya K.
        • Iizuka Y.
        • Mizowaki T.
        • Togashi K.
        • Mishima M.
        • Hiraoka M.
        Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival after stereotactic body radiation therapy for lung cancer.
        J Thorac Oncol. 2015; 10: 116-125https://doi.org/10.1097/JTO.0000000000000359
        • Raghu G.
        • Weycker D.
        • Edelsberg J.
        • Bradford W.Z.
        • Oster G.
        Incidence and prevalence of idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2006; 174: 810-816https://doi.org/10.1164/rccm.200602-163OC
        • Ley B.
        • Collard H.R.
        Epidemiology of idiopathic pulmonary fibrosis.
        Clin Epidemiol. 2013; 5: 483-492
        • Fernandez B.A.
        • Fox G.
        • Bhatia R.
        • Sala E.
        • Noble B.
        • Denic N.
        • Fernandez D.
        • Duguid N.
        • Dohey A.
        • Kamel F.
        • Edwards L.
        • Mahoney K.
        • Stuckless S.
        • Parfrey P.S.
        • Woods M.O.
        A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features.
        Respir Res. 2012; 13: 64https://doi.org/10.1186/1465-9921-13-64
        • Kropski J.A.
        • Blackwell T.S.
        • Loyd J.E.
        The genetic basis of idiopathic pulmonary fibrosis.
        Eur Respir J. 2015; 45: 1717-1727https://doi.org/10.1183/09031936.00163814
        • Noth I.
        • Zhang Y.
        • Ma S.-F.
        • Flores C.
        • Barber M.
        • Huang Y.
        • Broderick S.M.
        • Wade M.S.
        • Hysi P.
        • Scuirba J.
        • Richards T.J.
        • Juan-Guardela B.M.
        • Vij R.
        • Han M.K.
        • Martinez F.J.
        • Kossen K.
        • Seiwert S.D.
        • Christie J.D.
        • Nicolae D.
        • Kaminski N.
        • Garcia J.GN.
        Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study.
        The Lancet Respiratory Medicine. 2013; 1: 309-317https://doi.org/10.1016/S2213-2600(13)70045-6
        • Seibold M.A.
        • Wise A.L.
        • Speer M.C.
        • Steele M.P.
        • Brown K.K.
        • Loyd J.E.
        • Fingerlin T.E.
        • Zhang W.
        • Gudmundsson G.
        • Groshong S.D.
        • Evans C.M.
        • Garantziotis S.
        • Adler K.B.
        • Dickey B.F.
        • du Bois R.M.
        • Yang I.V.
        • Herron A.
        • Kervitsky D.
        • Talbert J.L.
        • Markin C.
        • Park J.
        • Crews A.L.
        • Slifer S.H.
        • Auerbach S.
        • Roy M.G.
        • Lin J.
        • Hennessy C.E.
        • Schwarz M.I.
        • Schwartz D.A.
        A Common MUC5B Promoter Polymorphism and Pulmonary Fibrosis.
        N Engl J Med. 2011; 364: 1503-1512https://doi.org/10.1056/NEJMoa1013660
        • Morris A.
        • Gibson K.
        • Collman R.G.
        The lung microbiome in idiopathic pulmonary fibrosis. What does it mean and what should we do about it?.
        Am J Respir Crit Care Med. 2014; 190: 850-852
        • Peljto A.L.
        • Zhang Y.
        • Fingerlin T.E.
        • Ma S.-F.
        • Garcia J.G.N.
        • Richards T.J.
        • Silveira L.J.
        • Lindell K.O.
        • Steele M.P.
        • Loyd J.E.
        • Gibson K.F.
        • Seibold M.A.
        • Brown K.K.
        • Talbert J.L.
        • Markin C.
        • Kossen K.
        • Seiwert S.D.
        • Murphy E.
        • Noth I.
        • Schwarz M.I.
        • Kaminski N.
        • Schwartz D.A.
        Association Between the MUC5B Promoter Polymorphism and Survival in Patients With Idiopathic Pulmonary Fibrosis.
        JAMA. 2013; 309: 2232https://doi.org/10.1001/jama.2013.5827
        • Kaur A.
        • Mathai S.K.
        • Schwartz D.A.
        Genetics in Idiopathic Pulmonary Fibrosis Pathogenesis, Prognosis, and Treatment.
        Front Med (Lausanne). 2017; 4: 154
        • Longo D.L.
        • Lederer D.J.
        • Martinez F.J.
        Idiopathic Pulmonary Fibrosis.
        N Engl J Med. 2018; 378: 1811-1823https://doi.org/10.1056/NEJMra1705751
        • Esposito D.B.
        • Lanes S.
        • Donneyong M.
        • Holick C.N.
        • Lasky J.A.
        • Lederer D.
        • Nathan S.D.
        • O’Quinn S.
        • Parker J.
        • Tran T.N.
        Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation.
        Am J Respir Crit Care Med. 2015; 192: 1200-1207https://doi.org/10.1164/rccm.201504-0818OC
        • Coward W.R.
        • Saini G.
        • Jenkins G.
        The pathogenesis of idiopathic pulmonary fibrosis.
        Therapeutic Advances in Respiratory. 2010; 4: 367-388https://doi.org/10.1177/1753465810379801
        • Williams K.
        • Malarkey D.
        • Cohn L.
        • Patrick D.
        • Dye J.
        • Toews G.
        Identification of spontaneous feline idiopathic pulmonary fibrosis: morphology and ultrastructural evidence for a type II pneumocyte defect.
        Chest. 2004; 125: 2278-2288
        • Huang Y.
        • Zhang W.
        • Yu F.
        • Gao F.
        The Cellular and Molecular Mechanism of Radiation-Induced Lung Injury.
        Med Sci Monit. 2017; 23: 3446-3450
        • King Jr., T.E.
        • Schwarz M.I.
        • Brown K.
        • Tooze J.A.
        • Colby T.V.
        • Waldron Jr, J.A.
        • et al.
        Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality.
        Am J Respir Crit Care Med. 2001; 164: 1025-1032
        • Wynn T.A.
        Cellular and molecular mechanisms of fibrosis.
        J Pathol. 2008; 214: 199-210
        • Campisi J.
        • d'Adda di Fagagna F.
        Cellular senescence: when bad things happen to good cells.
        Nat Rev Mol Cell Biol. 2007; 8: 729-740
        • Chung E.J.
        • Sowers A.
        • Thetford A.
        • McKay-Corkum G.
        • Chung S.I.
        • Mitchell J.B.
        • et al.
        Mammalian target of rapamycin inhibition with rapamycin mitigates radiation-induced pulmonary fibrosis in a murine model.
        Int J Radiat Oncol Biol Phys. 2016; 96: 857-866
        • Lehmann M.
        • Korfei M.
        • Mutze K.
        • Klee S.
        • Skronska-Wasek W.
        • Alsafadi H.N.
        • et al.
        Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo.
        Eur Respir J. 2017; 50
        • Schafer M.J.
        • White T.A.
        • Iijima K.
        • Haak A.J.
        • Ligresti G.
        • Atkinson E.J.
        • et al.
        Cellular senescence mediates fibrotic pulmonary disease.
        Nat Commun. 2017; 8: 14532
        • Nguyen H.Q.
        • To N.H.
        • Zadigue P.
        • Kerbrat S.
        • De La Taille A.
        • Le Gouvello S.
        • et al.
        Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review.
        Crit Rev Oncol Hematol. 2018; 129: 13-26
        • Selman M.
        • King T.E.
        • Pardo A.
        • American Thoracic S.
        European Respiratory S, American College of Chest P. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.
        Ann Intern Med. 2001; 134: 136-151
        • Derynck R.
        • Zhang Y.E.
        Smad-dependent and Smad-independent pathways in TGF-beta family signalling.
        Nature. 2003; 425: 577-584
        • Gross T.J.
        • Hunninghake G.W.
        Idiopathic pulmonary fibrosis.
        N Engl J Med. 2001; 345: 517-525
        • Karpathiou G.
        • Giatromanolaki A.
        • Koukourakis M.I.
        • Mihailidis V.
        • Sivridis E.
        • Bouros D.
        • et al.
        Histological changes after radiation therapy in patients with lung cancer: a prospective study.
        Anticancer Res. 2014; 34: 3119-3124
        • Chen Y.
        • Hyrien O.
        • Williams J.
        • Okunieff P.
        • Smudzin T.
        • Rubin P.
        Interleukin (IL)-1A and IL-6: applications to the predictive diagnostic testing of radiation pneumonitis.
        Int J Radiat Oncol Biol Phys. 2005; 62: 260-266
        • Chen Y.
        • Williams J.
        • Ding I.
        • Hernady E.
        • Liu W.
        • Smudzin T.
        • et al.
        Radiation pneumonitis and early circulatory cytokine markers.
        Semin Radiat Oncol. 2002; 12: 26-33
        • Chung J.H.
        • Lynch D.A.
        The value of a multidisciplinary approach to the diagnosis of usual interstitial pneumonitis and idiopathic pulmonary fibrosis: radiology, pathology, and clinical correlation.
        AJR Am J Roentgenol. 2016; 206: 463-471
        • Raghu G.
        • Remy-Jardin M.
        • Myers J.L.
        • Richeldi L.
        • Ryerson C.J.
        • Lederer D.J.
        • et al.
        Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline.
        Am J Respir Crit Care Med. 2018; 198: e44-e68
        • Benveniste M.F.
        • Gomez D.
        • Carter B.W.
        • Betancourt Cuellar S.L.
        • Shroff G.S.
        • Benveniste A.P.A.
        • et al.
        Recognizing radiation therapy-related complications in the chest.
        Radiographics. 2019; 39: 344-366
        • Win T.
        • Thomas B.A.
        • Lambrou T.
        • Hutton B.F.
        • Screaton N.J.
        • Porter J.C.
        • et al.
        Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients.
        Eur J Nucl Med Mol Imaging. 2014; 41: 337-342
        • Kolb M.
        • Collard H.R.
        Staging of idiopathic pulmonary fibrosis: past, present and future.
        Eur Respir Rev. 2014; 23: 220-224
        • Elhai M.
        • Avouac J.
        • Allanore Y.
        Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand?.
        Semin Arthritis Rheum. 2020;
        • Hamai K.
        • Iwamoto H.
        • Ishikawa N.
        • Horimasu Y.
        • Masuda T.
        • Miyamoto S.
        • et al.
        Comparative study of circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as disease markers of idiopathic pulmonary fibrosis.
        Dis Markers. 2016; 2016: 4759040
        • Ley B.
        • Collard H.R.
        • King Jr., T.E.
        Clinical course and prediction of survival in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2011; 183: 431-440
        • Raghu G.
        • Collard H.R.
        • Egan J.J.
        • Martinez F.J.
        • Behr J.
        • Brown K.K.
        • et al.
        An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
        Am J Respir Crit Care Med. 2011; 183: 788-824
        • Song J.W.
        • Hong S.B.
        • Lim C.M.
        • Koh Y.
        • Kim D.S.
        Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome.
        Eur Respir J. 2011; 37: 356-363
        • Collard H.R.
        • King Jr., T.E.
        • Bartelson B.B.
        • Vourlekis J.S.
        • Schwarz M.I.
        • Brown K.K.
        Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2003; 168: 538-542
        • Zappala C.J.
        • Latsi P.I.
        • Nicholson A.G.
        • Colby T.V.
        • Cramer D.
        • Renzoni E.A.
        • et al.
        Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis.
        Eur Respir J. 2010; 35: 830-836
        • Flaherty K.R.
        • Thwaite E.L.
        • Kazerooni E.A.
        • Gross B.H.
        • Toews G.B.
        • Colby T.V.
        • et al.
        Radiological versus histological diagnosis in UIP and NSIP: survival implications.
        Thorax. 2003; 58: 143-148
        • Sumikawa H.
        • Johkoh T.
        • Colby T.V.
        • Ichikado K.
        • Suga M.
        • Taniguchi H.
        • et al.
        Computed tomography findings in pathological usual interstitial pneumonia: relationship to survival.
        Am J Respir Crit Care Med. 2008; 177: 433-439
        • Umeda Y.
        • Demura Y.
        • Morikawa M.
        • Anzai M.
        • Kadowaki M.
        • Ameshima S.
        • et al.
        Prognostic value of dual-time-point 18F-FDG PET for idiopathic pulmonary fibrosis.
        J Nucl Med. 2015; 56: 1869-1875
        • Justet A.
        • Laurent-Bellue A.
        • Thabut G.
        • Dieudonne A.
        • Debray M.P.
        • Borie R.
        • et al.
        [(18)F]FDG PET/CT predicts progression-free survival in patients with idiopathic pulmonary fibrosis.
        Respir Res. 2017; 18: 74
        • Korthagen N.M.
        • van Moorsel C.H.
        • Barlo N.P.
        • Ruven H.J.
        • Kruit A.
        • Heron M.
        • et al.
        Serum and BALF YKL-40 levels are predictors of survival in idiopathic pulmonary fibrosis.
        Respir Med. 2011; 105: 106-113
        • Vuga L.J.
        • Tedrow J.R.
        • Pandit K.V.
        • Tan J.
        • Kass D.J.
        • Xue J.
        • et al.
        C-X-C motif chemokine 13 (CXCL13) is a prognostic biomarker of idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2014; 189: 966-974
        • Simler N.R.
        • Brenchley P.E.
        • Horrocks A.W.
        • Greaves S.M.
        • Hasleton P.S.
        • Egan J.J.
        Angiogenic cytokines in patients with idiopathic interstitial pneumonia.
        Thorax. 2004; 59: 581-585
        • Wang K.
        • Ju Q.
        • Cao J.
        • Tang W.
        • Zhang J.
        Impact of serum SP-A and SP-D levels on comparison and prognosis of idiopathic pulmonary fibrosis: A systematic review and meta-analysis.
        Medicine (Baltimore). 2017; 96e7083
        • Tzouvelekis A.
        • Herazo-Maya J.D.
        • Slade M.
        • Chu J.H.
        • Deiuliis G.
        • Ryu C.
        • et al.
        Validation of the prognostic value of MMP-7 in idiopathic pulmonary fibrosis.
        Respirology. 2017; 22: 486-493
        • Kong F.M.
        • Ao X.
        • Wang L.
        • Lawrence T.S.
        The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy.
        Cancer Control. 2008; 15: 140-150
        • Anscher M.S.
        • Kong F.M.
        • Andrews K.
        • Clough R.
        • Marks L.B.
        • Bentel G.
        • et al.
        Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis.
        Int J Radiat Oncol Biol Phys. 1998; 41: 1029-1035
        • Goto K.
        • Kodama T.
        • Sekine I.
        • Kakinuma R.
        • Kubota K.
        • Hojo F.
        • et al.
        Serum levels of KL-6 are useful biomarkers for severe radiation pneumonitis.
        Lung Cancer. 2001; 34: 141-148
        • Raghu G.
        • Rochwerg B.
        • Zhang Y.
        • Garcia C.A.
        • Azuma A.
        • Behr J.
        • et al.
        An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline.
        Am J Respir Crit Care Med. 2015; 192: e3-e19
        • Inomata M.
        • Nishioka Y.
        • Azuma A.
        Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis.
        Core Evid. 2015; 10: 89-98
        • Aravena C.
        • Labarca G.
        • Venegas C.
        • Arenas A.
        • Rada G.
        Pirfenidone for idiopathic pulmonary fibrosis: A systematic review and meta-analysis.
        PLoS One. 2015; 10e0136160
        • King Jr., T.E.
        • Bradford W.Z.
        • Castro-Bernardini S.
        • Fagan E.A.
        • Glaspole I.
        • Glassberg M.K.
        • et al.
        A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.
        N Engl J Med. 2014; 370: 2083-2092
        • Noble P.W.
        • Albera C.
        • Bradford W.Z.
        • Costabel U.
        • Glassberg M.K.
        • Kardatzke D.
        • et al.
        Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials.
        Lancet. 2011; 377: 1760-1769
        • Richeldi L.
        • Costabel U.
        • Selman M.
        • Kim D.S.
        • Hansell D.M.
        • Nicholson A.G.
        • et al.
        Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis.
        N Engl J Med. 2011; 365: 1079-1087
        • Richeldi L.
        • Cottin V.
        • du Bois R.M.
        • Selman M.
        • Kimura T.
        • Bailes Z.
        • et al.
        Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS((R)) trials.
        Respir Med. 2016; 113: 74-79
        • Vancheri C.
        • Kreuter M.
        • Richeldi L.
        • Ryerson C.J.
        • Valeyre D.
        • Grutters J.C.
        • et al.
        Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the injourney trial.
        Am J Respir Crit Care Med. 2018; 197: 356-363
        • Abdollahi A.
        • Li M.
        • Ping G.
        • Plathow C.
        • Domhan S.
        • Kiessling F.
        • et al.
        Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis.
        J Exp Med. 2005; 201: 925-935
        • Flechsig P.
        • Dadrich M.
        • Bickelhaupt S.
        • Jenne J.
        • Hauser K.
        • Timke C.
        • et al.
        LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals.
        Clin Cancer Res. 2012; 18: 3616-3627
        • Dadrich M.
        • Nicolay N.H.
        • Flechsig P.
        • Bickelhaupt S.
        • Hoeltgen L.
        • Roeder F.
        • et al.
        Combined inhibition of TGFbeta and PDGF signaling attenuates radiation-induced pulmonary fibrosis.
        Oncoimmunology. 2016; 5e1123366
        • Bickelhaupt S.
        • Erbel C.
        • Timke C.
        • Wirkner U.
        • Dadrich M.
        • Flechsig P.
        • et al.
        Effects of CTGF blockade on attenuation and reversal of radiation-induced pulmonary fibrosis.
        J Natl Cancer Inst. 2017; 109
        • Chen Z.
        • Wu Z.
        • Ning W.
        Advances in molecular mechanisms and treatment of radiation-induced pulmonary fibrosis.
        Transl Oncol. 2019; 12: 162-169
        • Williams J.P.
        • Johnston C.J.
        • Finkelstein J.N.
        Treatment for radiation-induced pulmonary late effects: spoiled for choice or looking in the wrong direction?.
        Curr Drug Targets. 2010; 11: 1386-1394
        • Palma D.A.
        • Senan S.
        • Tsujino K.
        • Barriger R.B.
        • Rengan R.
        • Moreno M.
        • et al.
        Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis.
        Int J Radiat Oncol Biol Phys. 2013; 85: 444-450
        • Kim H.
        • Pyo H.
        • Noh J.M.
        • Lee W.
        • Park B.
        • Park H.Y.
        • et al.
        Preliminary result of definitive radiotherapy in patients with non-small cell lung cancer who have underlying idiopathic pulmonary fibrosis: comparison between X-ray and proton therapy.
        Radiat Oncol. 2019; 14: 19
        • Ono T.
        • Hareyama M.
        • Nakamura T.
        • Kimura K.
        • Hayashi Y.
        • Azami Y.
        • et al.
        The clinical results of proton beam therapy in patients with idiopathic pulmonary fibrosis: a single center experience.
        Radiat Oncol. 2016; 11: 56
        • Takeda A.
        • Enomoto T.
        • Sanuki N.
        • Nakajima T.
        • Takeda T.
        • Sayama K.
        • et al.
        Acute exacerbation of subclinical idiopathic pulmonary fibrosis triggered by hypofractionated stereotactic body radiotherapy in a patient with primary lung cancer and slightly focal honeycombing.
        Radiat Med. 2008; 26: 504-507
        • Isobe K.
        • Hata Y.
        • Sakamoto S.
        • Takai Y.
        • Shibuya K.
        • Homma S.
        Clinical characteristics of acute respiratory deterioration in pulmonary fibrosis associated with lung cancer following anti-cancer therapy.
        Respirology. 2010; 15: 88-92
        • Marks L.B.
        • Bentzen S.M.
        • Deasy J.O.
        • Kong F.M.
        • Bradley J.D.
        • Vogelius I.S.
        • et al.
        Radiation dose-volume effects in the lung.
        Int J Radiat Oncol Biol Phys. 2010; 76: S70-S76
        • Higo H.
        • Kubo T.
        • Makimoto S.
        • Makimoto G.
        • Ihara H.
        • Masaoka Y.
        • et al.
        Chemoradiotherapy for locally advanced lung cancer patients with interstitial lung abnormalities.
        Jpn J Clin Oncol. 2019; 49: 458-464
        • De Ruysscher D.
        • Faivre-Finn C.
        • Moeller D.
        • Nestle U.
        • Hurkmans C.W.
        • Le Pechoux C.
        • et al.
        European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer.
        Radiother Oncol. 2017; 124: 1-10
        • Yamashita H.
        • Kobayashi-Shibata S.
        • Terahara A.
        • Okuma K.
        • Haga A.
        • Wakui R.
        • et al.
        Prescreening based on the presence of CT-scan abnormalities and biomarkers (KL-6 and SP-D) may reduce severe radiation pneumonitis after stereotactic radiotherapy.
        Radiat Oncol. 2010; 5: 32
        • Yamaguchi S.
        • Ohguri T.
        • Ide S.
        • Aoki T.
        • Imada H.
        • Yahara K.
        • et al.
        Stereotactic body radiotherapy for lung tumors in patients with subclinical interstitial lung disease: the potential risk of extensive radiation pneumonitis.
        Lung Cancer. 2013; 82: 260-265
        • Chen H.
        • Senan S.
        • Nossent E.J.
        • Boldt R.G.
        • Warner A.
        • Palma D.A.
        • et al.
        Treatment-related toxicity in patients with early-stage non-small cell lung cancer and coexisting interstitial lung disease: a systematic review.
        Int J Radiat Oncol Biol Phys. 2017; 98: 622-631
        • Harada H.
        • Murayama S.
        Proton beam therapy in non-small cell lung cancer: state of the art.
        Lung Cancer (Auckl). 2017; 8: 141-145
        • Nagano T.
        • Kotani Y.
        • Fujii O.
        • Demizu Y.
        • Niwa Y.
        • Ohno Y.
        • et al.
        A case of acute exacerbation of idiopathic pulmonary fibrosis after proton beam therapy for non-small cell lung cancer.
        Jpn J Clin Oncol. 2012; 42: 965-969
        • Kobayashi H.
        • Naito T.
        • Omae K.
        • Omori S.
        • Nakashima K.
        • Wakuda K.
        • et al.
        Impact of interstitial lung disease classification on the development of acute exacerbation of interstitial lung disease and prognosis in patients with stage III non-small-cell lung cancer and interstitial lung disease treated with chemoradiotherapy.
        J Cancer. 2018; 9: 2054-2060
        • De Ruysscher D.
        • Granton P.V.
        • Lieuwes N.G.
        • van Hoof S.
        • Wollin L.
        • Weynand B.
        • et al.
        Nintedanib reduces radiation-induced microscopic lung fibrosis but this cannot be monitored by CT imaging: A preclinical study with a high precision image-guided irradiator.
        Radiother Oncol. 2017; 124: 482-487
        • Qin W.
        • Liu B.
        • Yi M.
        • Li L.
        • Tang Y.
        • Wu B.
        • et al.
        Antifibrotic agent pirfenidone protects against development of radiation-induced pulmonary fibrosis in a murine model.
        Radiat Res. 2018; 190: 396-403