162
TWITTER: A PLATFORM FOR DISSEMINATION AND DISCUSSION OF SCIENTIFIC PAPERS IN RADIATION ONCOLOGY
Noémie Paradis1, Miriam A Knoll1, Chirag Shah1, Carole Lambert1, Guila Delouya1, Houda Bahig1, Daniel Taussky1
1Université de Montréal, Montréal, QC
2John Theurer Cancer Center, Hackensack, NJ
3Taussig Cancer Institute, Cleveland, OH
4Centre Hospitalier de l'Université de Montréal, Montréal, QC

Purpose: To examine the correlation between Twitter mentions and the number of academic citations of radiation oncology articles.

Materials and Methods: We reviewed all 178 clinical manuscripts of the two most important radiation-oncology journals and “Brachytherapy”, and all clinical manuscripts relating to radiation oncology from the top 10 impact factor oncology journals, published between January and February 2018. We collected the record of citations utilizing Scopus and Google scholar platforms and the number of times an article was tweeted about using the “Altmetric Bookmarklet”. Chi-square test was used to compare distributions between groups and Pearson coefficient was used for correlations between the twitter metrics and academic citations.

Results: Seventy-one percent of all articles were tweeted about at least once. There was a significant correlation between the number of tweets and the number of citations in Google Scholar (r=0.55, p<0.001) and in Scopus (r=0.59, p<0.001). The 11% of articles with a pre-publication Twitter “buzz” (defined as an article with ≥10 tweets before publication) had 3.6 times more citations in Scopus (mean 14.8 versus 4.2, p<0.001) and 2.9 times more citations in Google Scholar (17.8 versus 6.0, p<0.001) when compared to papers with no “buzz”.

Conclusions: Presence on Twitter was correlated with the number of academic citations of an article in radiation oncology. This suggests that Twitter is being utilized by oncology community as a platform to discuss and disseminate high impact scientific articles. The correlation between Twitter and increasing the number of citations of an article through larger dissemination and exposure requires further studies.

163
MAPPING THE CURRENT STATE OF CANADIAN ONCOLOGY INTEREST GROUPS
George J. Li1, Nauman H. Malik1, Meredith Giuliani1, Michael Brundage1, Amanda Caisse1, Jeffrey Q. Cao1, Ross Haelperin2, Paris-Ann Inglede2, Eric Vigneault1, Andrea Bezjak1
1University of Toronto, Toronto, ON
2Queen's University, Kingston, ON
3Dalhousie University, Saint John, NB
4University of Calgary, Calgary, AB
5The University of British Columbia, Kelowna, BC
6The University of British Columbia, Vancouver, BC
7University of Laval, Quebec, QC

Purpose: Cancer is the leading cause of mortality in Canada. Despite this, gaps remain in both formal oncology undergraduate medical education (UGME) curricula as well as clerkship exposure to oncology across Canada. The purpose of this study was to explore the current state of Canadian Oncology Interest Groups (OIGs), medical student-led groups which supplement formal UGME teaching.

Materials and Methods: Contact information of medical students acting as OIG leaders at all 17 Canadian medical schools were obtained from their respective UGME offices. Survey questions were developed by the co-authors to assess OIG activities, goals, barriers, future directions and oncology job market perceptions. The survey was distributed electronically to OIG leaders using Google Forms. Responses were collected from January to April 2019, and one follow-up reminder was sent during this time.

Results: OIG leaders from 12/17 (71%) Canadian medical schools responded. Only Medical Oncology was represented by all OIGs, with the second most common being Radiation Oncology (75%). Half of OIGs had faculty mentors. Self-reported main goals of OIG events were to increase exposure to oncology specialties (100%), assist students with career selection (92%), enhance oncology education (83%), and help students find mentors (58%). OIGs held five events per year on average, with the most common being specialty introduction talks. Reported barriers included finding time to plan events, declining student interest over the academic year, and limited funding. OIGs showed interest in sharing standardized presentations on specialties and educational topics (83%), as well as other resources such as pamphlets (75%) and increased funding (58%). Employment in radiation, surgical and gynecologic oncology were perceived as below average, while medical oncology and palliative care were above average. Important considerations for career selection included ease of employment, practice location and partner/family preference.

Conclusions: OIGs across Canada play an important role in exposing medical students to oncology, but not all oncology specialties were represented equally. Our survey revealed a broad interest in collaboration between OIGs, unmet needs, and highlights areas for future improvements such as increased access to mentors and content sharing.