Advertisement

The role of the gut microbiome on radiation therapy efficacy and gastrointestinal complications: A systematic review

Published:October 30, 2020DOI:https://doi.org/10.1016/j.radonc.2020.10.033

      Highlights

      • Composition of the gut microbiome modulates cancer immune set-points.
      • Microbiome may trigger immune system to observe more systemic abscopal effect.
      • Current evidence suggests that the gut microbiome influences radiotherapy efficacy.
      • Gut microbiome is a key modulator in radiation-induced gastro-intestinal mucositis.

      Abstract

      Radiation therapy (RT) is an essential component of therapy either curative or palliative armamentarium in oncology, but its efficacy varies considerably among patients through many extrinsic and intrinsic mechanisms of the tumour, which are beginning to be better understood. Recent studies have shown that the gut microbiome represents a key factor in the modulation of the systemic immune response and consequently on patients’ outcome. Moreover, the emergence of biomarkers that are derived from the gut microbiota has fuelled the development of adjuvant strategies for patients treated with immunotherapy in combination or not with RT. Despite progress in development of more precise radiotherapy techniques, almost all patients undergoing RT to the abdomen, pelvis, or rectum develop acute adverse events as a consequence of several dose-limiting parameters such as the location of irradiation that may subsequently damage normal tissue including the intestinal epithelium. Several lines of evidence in preclinical models identified that vancomycin improves RT-induced gastrointestinal toxicities such as diarrhea and oral mucositis. In order to gain further insight into this rapidly evolving field, we have systematically reviewed the studies that have described how the gut microbiome may directly or indirectly modulate RT efficacy and its gastro-intestinal toxicities. Lastly, we outline current knowledge gaps and discuss potentially more satisfactory therapeutic options to restore the functionality of the gut microbiome of patients treated with RT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goubet A.-G.
        • Daillère R.
        • Routy B.
        • Derosa L.M.
        • Roberti P.
        • Zitvogel L.
        The impact of the intestinal microbiota in therapeutic responses against cancer.
        C R Biol. 2018; 341: 284-289
        • Routy B.
        • Gopalakrishnan V.
        • Daillère R.
        • Zitvogel L.
        • Wargo J.A.
        • Kroemer G.
        The gut microbiota influences anticancer immunosurveillance and general health.
        Nat Rev Clin Oncol. 2018; 15: 382-396
        • Reinhardt C.
        • Bergentall M.
        • Greiner T.U.
        • Schaffner F.
        • Ostergren-Lundén G.
        • Petersen L.C.
        • et al.
        Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling.
        Nature. 2012; 483: 627-631
        • Catry E.
        • Bindels L.B.
        • Tailleux A.
        • Lestavel S.
        • Neyrinck A.M.
        • Goossens J.-F.
        • et al.
        Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction.
        Gut. 2018; 67: 271-283
        • Cho I.
        • Blaser M.J.
        The Human Microbiome: at the interface of health and disease.
        Nat Rev Genet. 2012; 13: 260-270
        • Viaud S.
        • Saccheri F.
        • Mignot G.
        • Yamazaki T.
        • Daillère R.
        • Hannani D.
        • et al.
        The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.
        Science. 2013; 342: 971-976
        • Mazmanian S.K.
        • Liu C.H.
        • Tzianabos A.O.
        • Kasper D.L.
        An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.
        Cell. 2005; 122: 107-118
        • Round J.L.
        • Mazmanian S.K.
        The gut microbiota shapes intestinal immune responses during health and disease.
        Nat Rev Immunol. 2009; 9: 313-323
        • Round J.L.
        • Mazmanian S.K.
        Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.
        Proc Natl Acad Sci U S A. 2010; 107: 12204-12209
        • Atarashi K.
        • Tanoue T.
        • Oshima K.
        • Suda W.
        • Nagano Y.
        • Nishikawa H.
        • et al.
        T reg induction by a rationally selected mixture of Clostridia strains from the human microbiota.
        Nature. 2013; 500: 232-236
        • Pickard J.M.
        • Zeng M.Y.
        • Caruso R.
        • Núñez G.
        Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease.
        Immunol Rev. 2017; 279: 70-89
        • Vétizou M.
        • Pitt J.M.
        • Daillère R.
        • Lepage P.
        • Waldschmitt N.
        • Flament C.
        • et al.
        Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.
        Science. 2015; 350: 1079-1084
        • Sivan A.
        • Corrales L.
        • Hubert N.
        • Williams J.B.
        • Aquino-Michaels K.
        • Earley Z.M.
        • et al.
        Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
        Science. 2015; 350: 1084-1089
        • Dubin K.
        • Callahan M.K.
        • Ren B.
        • Khanin R.
        • Viale A.
        • Ling L.
        • et al.
        Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis.
        Nat Commun. 2016; 2: 10391
        • Chaput N.
        • Lepage P.
        • Coutzac C.
        • Soularue E.
        • Roux K.L.
        • Monot C.
        • et al.
        Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab.
        Ann Oncol. 2017; 28: 1368-1379
        • Derosa L.
        • Hellmann M.D.
        • Spaziano M.
        • Halpenny D.
        • Fidelle M.
        • Rizvi H.
        • et al.
        Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer.
        Ann Oncol. 2018; 29: 1437-1444
        • Elkrief A.
        • Derosa L.
        • Kroemer G.
        • Zitvogel L.
        • Routy B.
        The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor?.
        Ann Oncol. 2019; 30: 1572-1579
        • Wilson A.S.
        • Koller K.R.
        • Ramaboli M.C.
        • Nesengani L.T.
        • Ocvirk S.
        • Chen C.
        • et al.
        Diet and the Human Gut Microbiome: An International Review.
        Dig Dis Sci. 2020; 65: 723-740
        • Pinato D.J.
        • Howlett S.
        • Ottaviani D.
        • Urus H.
        • Patel A.
        • Mineo T.
        • et al.
        Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer.
        JAMA Oncol. 2019;
        • François A.
        • Milliat F.
        • Guipaud O.
        • Benderitter M.
        Inflammation and immunity in radiation damage to the gut mucosa.
        Biomed Res Int. 2013; 2013123241
        • Tyldesley S.
        • Boyd C.
        • Schulze K.
        • Walker H.
        • Mackillop W.J.
        Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach.
        Int J Radiat Oncol Biol Phys. 2001; 49: 973-985
        • Delaney G.
        • Jacob S.
        • Featherstone C.
        • Barton M.
        The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines.
        Cancer. 2005; 104: 1129-1137
        • Apetoh L.
        • Ghiringhelli F.
        • Tesniere A.
        • Obeid M.
        • Ortiz C.
        • Criollo A.
        • et al.
        Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.
        Nat Med. 2007; 13: 1050-1059
        • Demaria S.
        • Formenti S.C.
        Radiation as an immunological adjuvant: current evidence on dose and fractionation.
        Front Oncol. 2012; 2: 153
        • Golden E.B.
        • Frances D.
        • Pellicciotta I.
        • Demaria S.
        • Helen Barcellos-Hoff M.
        • Formenti S.C.
        Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death.
        Oncoimmunology. 2014; 3e28518
        • Demaria S.
        • Coleman C.N.
        • Formenti S.C.
        Radiotherapy: Changing the Game in Immunotherapy.
        Trends Cancer. 2016; 2: 286-294
        • Twyman-Saint Victor C.
        • Rech A.J.
        • Maity A.
        • Rengan R.
        • Pauken K.E.
        • Stelekati E.
        • et al.
        Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.
        Nature. 2015; 520: 373-377
        • Peters L.J.
        • Withers H.R.
        • Thames H.D.
        • Fletcher G.H.
        Tumor radioresistance in clinical radiotherapy.
        Int J Radiat Oncol Biol Phys. 1982; 8: 101-108
        • Kim J.J.
        • Tannock I.F.
        Repopulation of cancer cells during therapy: an important cause of treatment failure.
        Nat Rev Cancer. 2005; 5: 516-525
        • Dewhirst M.W.
        • Chi J.-T.
        Understanding the tumor microenvironment and radioresistance by combining functional imaging with global gene expression.
        Semin Radiat Oncol. 2013; 23: 296-305
        • Peterson D.E.
        • Boers-Doets C.B.
        • Bensadoun R.J.
        • Herrstedt J.
        Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up.
        Ann Oncol. 2015; 26: v139-v151
        • Yahyapour R.
        • Motevaseli E.
        • Rezaeyan A.
        • Abdollahi H.
        • Farhood B.
        • Cheki M.
        • et al.
        Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
        Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2018; 20: 975-988
        • Uribe-Herranz M.
        • Rafail S.
        • Beghi S.
        • Gil-de-Gómez L.
        • Verginadis I.
        • Bittinger K.
        • et al.
        Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response.
        J Clin Invest. 2020; 130: 466-479
        • Johnson L.B.
        • Riaz A.A.
        • Adawi D.
        • Wittgren L.
        • Bäck S.
        • Thornberg C.
        • et al.
        Radiation enteropathy and leucocyte-endothelial cell reactions in a refined small bowel model.
        BMC Surg. 2004; 13: 10
        • Kim Y.S.
        • Kim J.
        • Park S.-J.
        High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy.
        Anaerobe. 2015; 33: 1-7
        • Zhao Y.
        • Zhang J.
        • Han X.
        • Fan S.
        Total body irradiation induced mouse small intestine senescence as a late effect.
        J Radiat Res (Tokyo). 2019; 60: 442-450
      1. Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Med Sci. :6.

        • Routy B.
        • Letendre C.
        • Enot D.
        • Chénard-Poirier M.
        • Mehraj V.
        • Séguin N.C.
        • et al.
        The influence of gut-decontamination prophylactic antibiotics on acute graft-versus-host disease and survival following allogeneic hematopoietic stem cell transplantation.
        Oncoimmunology. 2017; 6e1258506
        • Zama D.
        • Bossù G.
        • Leardini D.
        • Muratore E.
        • Biagi E.
        • Prete A.
        • et al.
        Insights into the role of intestinal microbiota in hematopoietic stem-cell transplantation.
        Ther Adv Hematol. 2020; ([Internet] Jan 20 [cited 2020 May 3];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974760/)
        • Paulos C.M.
        • Wrzesinski C.
        • Kaiser A.
        • Hinrichs C.S.
        • Chieppa M.
        • Cassard L.
        • et al.
        Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling.
        J Clin Invest. 2007; 117: 2197-2204
        • Sahly N.
        • Moustafa A.
        • Zaghloul M.
        • Salem T.Z.
        Effect of radiotherapy on the gut microbiome in pediatric cancer patients: a pilot study.
        PeerJ. 2019; 7e7683
        • Wardill H.R.
        • Tissing W.J.E.
        Determining risk of severe gastrointestinal toxicity based on pretreatment gut microbial community in patients receiving cancer treatment: a new predictive strategy in the quest for personalized cancer medicine.
        Curr Opin Support Palliat Care. 2017; 11: 125-132
        • Sonis S.T.
        The pathobiology of mucositis.
        Nat Rev Cancer. 2004; 4: 277-284
        • Ferreira M.R.
        • Muls A.
        • Dearnaley D.P.
        • Andreyev H.J.N.
        Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist.
        Lancet Oncol. 2014; 15: e139-e147
        • Yarnold J.
        • Brotons M.-C.V.
        Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol J Eur Soc Ther Radiol.
        Oncol. 2010; 97: 149-161
        • Intestinal Umar S.
        • Cells Stem
        Curr Gastroenterol Rep. 2010; 12: 340-348
        • Fischer J.C.
        • Bscheider M.
        • Eisenkolb G.
        • Lin C.-C.
        • Wintges A.
        • Otten V.
        • et al.
        RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury.
        Sci Transl Med. 2017; 9: 19
        • Burnette B.C.
        • Liang H.
        • Lee Y.
        • Chlewicki L.
        • Khodarev N.N.
        • Weichselbaum R.R.
        • et al.
        The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity.
        Cancer Res. 2011; 71: 2488-2496
        • Lim J.Y.H.
        • Gerber S.A.
        • Murphy S.P.
        • Lord E.M.
        Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells.
        Cancer Immunol Immunother CII. 2014; 63: 259-271
        • Deng L.
        • Liang H.
        • Xu M.
        • Yang X.
        • Burnette B.
        • Arina A.
        • et al.
        STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors.
        Immunity. 2014; 41: 843-852
        • Gerassy-Vainberg S.
        • Blatt A.
        • Danin-Poleg Y.
        • Gershovich K.
        • Sabo E.
        • Nevelsky A.
        • et al.
        Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction.
        Gut. 2018; 67: 97-107
        • Manichanh C.
        • Varela E.
        • Martinez C.
        • Antolin M.
        • Llopis M.
        • Dor J.
        • et al.
        The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea.
        Am J Gastroenterol. 2008; 103: 1754-1761
        • Nam Y.-D.
        • Kim H.J.
        • Seo J.-G.
        • Kang S.W.
        • Bae J.-W.
        Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing.
        PLoS ONE. 2013; 8
        • Wang A.
        • Ling Z.
        • Yang Z.
        • Kiela P.R.
        • Wang T.
        • Wang C.
        • et al.
        Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study.
        PLOS One. 2015; 10 (Grivennikov S, editor)
        • Gilbert A.
        • Ziegler L.
        • Martland M.
        • Davidson S.
        • Efficace F.
        • Sebag-Montefiore D.
        • et al.
        Systematic review of radiation therapy toxicity reporting in randomized controlled trials of rectal cancer: A comparison of patient-reported outcomes and clinician toxicity reporting.
        Int J Radiat Oncol Biol Phys. 2015; 92: 555-567
        • Reis Ferreira M.
        • Andreyev H.J.N.
        • Mohammed K.
        • Truelove L.
        • Gowan S.M.
        • Li J.
        • et al.
        Microbiota- and radiotherapy-induced gastrointestinal side-effects (MARS) Study: A large pilot study of the microbiome in acute and late-radiation enteropathy.
        Clin Cancer Res. 2019; 25: 6487-6500
        • Wang Z.
        • Wang Q.
        • Wang X.
        • Zhu L.
        • Chen J.
        • Zhang B.
        • et al.
        Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy.
        J Cell Mol Med. 2019; 23: 3747-3756
        • Mitra A.
        • Grossman Biegert G.W.
        • Delgado A.Y.
        • Karpinets T.V.
        • Solley T.N.
        • Mezzari M.P.
        • et al.
        Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer.
        Int J Radiat Oncol. 2020; 107: 163-171
        • Elting L.S.
        • Cooksley C.D.
        • Chambers M.S.
        • Garden A.S.
        Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies.
        Int J Radiat Oncol Biol Phys. 2007; 68: 1110-1120
        • Trotti A.
        • Bellm L.A.
        • Epstein J.B.
        • Frame D.
        • Fuchs H.J.
        • Gwede C.K.
        • et al.
        Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: a systematic literature review.
        Radiother Oncol J Eur Soc Ther Radiol Oncol. 2003; 66: 253-262
        • Vanhoecke B.W.A.
        • De Ryck T.R.G.
        • De Boel K.
        • Wiles S.
        • Boterberg T.
        • Van de Wiele T.
        • et al.
        Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis.
        Exp Biol Med Maywood NJ. 2016; 241: 60-70
        • Zhu X.-X.
        • Yang X.-J.
        • Chao Y.-L.
        • Zheng H.-M.
        • Sheng H.-F.
        • Liu H.-Y.
        • et al.
        The potential effect of oral microbiota in the prediction of mucositis during radiotherapy for nasopharyngeal carcinoma.
        EBioMedicine. 2017; 18: 23-31
        • Eliasson L.
        • Carlén A.
        • Almståhl A.
        • Wikström M.
        • Lingström P.
        Dental plaque pH and micro-organisms during hyposalivation.
        J Dent Res. 2006; 85: 334-338
        • Andrews N.
        • Griffiths C.
        Dental complications of head and neck radiotherapy: Part 1.
        Aust Dent J. 2001; 46: 88-94
        • Cui M.
        • Xiao H.
        • Li Y.
        • Zhou L.
        • Zhao S.
        • Luo D.
        • et al.
        Faecal microbiota transplantation protects against radiation-induced toxicity.
        EMBO Mol Med. 2017; 9: 448-461
        • Ding X.
        • Li Q.
        • Li P.
        • Chen X.
        • Xiang L.
        • Bi L.
        • et al.
        Fecal microbiota transplantation: A promising treatment for radiation enteritis?.
        Radiother Oncol J Eur Soc Ther Radiol Oncol. 2020; 143: 12-18
        • Ciorba M.A.
        • Riehl T.E.
        • Rao M.S.
        • Moon C.
        • Ee X.
        • Nava G.M.
        • et al.
        Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner.
        Gut. 2012; 61: 829-838
        • Sharma A.
        • Rath G.K.
        • Chaudhary S.P.
        • Thakar A.
        • Mohanti B.K.
        • Bahadur S.
        Lactobacillus brevis CD2 lozenges reduce radiation- and chemotherapy-induced mucositis in patients with head and neck cancer: a randomized double-blind placebo-controlled study.
        Eur J Cancer Oxf Engl 1990. 2012; 48: 875-881
        • Urbancsek H.
        • Kazar T.
        • Mezes I.
        • Neumann K.
        Results of a double-blind, randomized study to evaluate the efficacy and safety of Antibiophilus in patients with radiation-induced diarrhoea.
        Eur J Gastroenterol Hepatol. 2001; 13: 391-396
        • Lalla R.V.
        • Bowen J.
        • Barasch A.
        • Elting L.
        • Epstein J.
        • Keefe D.M.
        • et al.
        MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy.
        Cancer. 2014; 120: 1453-1461
        • Picó-Monllor J.A.
        • Mingot-Ascencao J.M.
        Search and selection of probiotics that improve mucositis symptoms in oncologic patients. A systematic review.
        Nutrients. 2019; ([Internet] Oct 1 [cited 2020 Mar 20];11(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835542/)
        • Wardill H.R.
        • Van Sebille Y.Z.A.
        • Ciorba M.A.
        • Bowen J.M.
        Prophylactic probiotics for cancer therapy-induced diarrhoea: a meta-analysis.
        Curr Opin Support Palliat Care. 2018; 12: 187-197
        • Gibson G.R.
        • Hutkins R.
        • Sanders M.E.
        • Prescott S.L.
        • Reimer R.A.
        • Salminen S.J.
        • et al.
        Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 491-502
        • Garcia-Peris P.
        • Velasco C.
        • Hernandez M.
        • Lozano M.A.
        • Paron L.
        • de la Cuerda C.
        • et al.
        Effect of inulin and fructo-oligosaccharide on the prevention of acute radiation enteritis in patients with gynecological cancer and impact on quality-of-life: a randomized, double-blind, placebo-controlled trial.
        Eur J Clin Nutr. 2016; 70: 170-174
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • Gootenberg D.B.
        • Button J.E.
        • Wolfe B.E.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Lee C.
        • Raffaghello L.
        • Brandhorst S.
        • Safdie F.M.
        • Bianchi G.
        • Martin-Montalvo A.
        • et al.
        Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy.
        Sci Transl Med. 2012; 4: 124ra27
        • Nencioni A.
        • Caffa I.
        • Cortellino S.
        • Longo V.D.
        Fasting and cancer: molecular mechanisms and clinical application.
        Nat Rev Cancer. 2018; 18: 707-719
        • Spencer C.N.
        • Gopalakrishnan V.
        • McQuade J.
        • Andrews M.C.
        • Helmink B.
        • Khan M.A.W.
        • et al.
        Abstract 2838: The gut microbiome (GM) and immunotherapy response are influenced by host lifestyle factors.
        Cancer Res. 2019; 79 (2838–2838)