Advertisement
Original Article| Volume 151, P234-241, October 2020

Download started.

Ok

Is multileaf collimator tracking or gating a better intrafraction motion adaptation strategy? An analysis of the TROG 15.01 stereotactic prostate ablative radiotherapy with KIM (SPARK) trial

      Highlights

      • Prostate motion during SABR can result in inaccurate radiation dose delivery.
      • Both MLC tracking and gating were effective methods for real-time motion adaptation.
      • MLC tracking and gating were comparable dosimetrically.
      • Gating resulted in more interruptions to the clinical workflow.

      Abstract

      Purpose

      Stereotactic Ablative Radiotherapy (SABR) has recently emerged as a favourable treatment option for prostate cancer patients. With higher doses delivered over fewer fractions, motion adaptation is a requirement for accurate delivery of SABR. This study compared the efficacy of multileaf collimator (MLC) tracking vs. gating as a real-time motion adaptation strategy for prostate SABR patients enrolled in a clinical trial.

      Methods

      Forty-four prostate cancer patients treated over five fractions in the TROG 15.01 SPARK trial were analysed in this study. Forty-nine fractions were treated using MLC tracking and 166 fractions were treated using beam gating and couch shifts. A time-resolved motion-encoded dose reconstruction method was used to evaluate the dose delivered using each motion adaptation strategy and compared to an estimation of what would have been delivered with no motion adaptation strategy implemented.

      Results

      MLC tracking and gating both delivered doses closer to the plan compared to when no motion adaptation strategy was used. Differences between MLC tracking and gating were small with differences in the mean discrepancy from the plan of −0.3% (CTV D98%), 1.4% (CTV D2%), 0.4% (PTV D95%), 0.2% (rectum V30Gy) and 0.0% (bladder V30Gy). On average, 0.5 couch shifts were required per gated fractions with a mean interruption duration of 1.8 ± 2.6 min per fraction treated using gating.

      Conclusion

      Both MLC tracking and gating were effective strategies at improving the accuracy of the dose delivered to the target and organs at risk. While dosimetric performance was comparable, gating resulted in interruptions to treatment.
      Clinical trial registration number: NCT02397317.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • King C.R.
        • Freeman D.
        • Kaplan I.
        • Fuller D.
        • Bolzicco G.
        • Collins S.
        • et al.
        Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials.
        Radiother Oncol. 2013; 109: 217-221
        • Katz A.J.
        • Kang J.
        Stereotactic body radiotherapy as treatment for organ confined low- and intermediate-risk prostate carcinoma, a 7-year study.
        Front Oncol. 2014; 4
        • King C.R.
        • Collins S.
        • Fuller D.
        • Wang P.-C.
        • Kupelian P.
        • Steinberg M.
        • et al.
        Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials.
        Int J Radiat Oncol Biol Phys. 2013; 87: 939-945
        • Kishan A.U.
        • Dang A.
        • Katz A.J.
        • Mantz C.A.
        • Collins S.P.
        • Aghdam N.
        • et al.
        Long-term outcomes of stereotactic body radiotherapy for low-risk and intermediate-risk prostate cancer.
        JAMA Network Open. 2019; 2: e188006
        • Widmark A.
        • Gunnlaugsson A.
        • Beckman L.
        • Thellenberg-Karlsson C.
        • Hoyer M.
        • Lagerlund M.
        • et al.
        Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial.
        The Lancet. 2019; 394: 385-395
        • Morgan S.C.
        • Hoffman K.
        • Loblaw D.A.
        • Buyyounouski M.K.
        • Patton C.
        • Barocas D.
        • et al.
        Hypofractionated radiation therapy for localized prostate cancer: An ASTRO, ASCO, and AUA evidence-based guideline.
        J Urol. 2018;
        • Pan H.
        • Simpson D.R.
        • Mell L.K.
        • Mundt A.J.
        • Lawson J.D.
        A survey of stereotactic body radiotherapy use in the United States.
        Cancer. 2011; 117: 4566-4572
        • Buyyounouski M.K.
        • Price R.A.
        • Harris E.E.
        • Miller R.
        • Tomé W.
        • Schefter T.
        • et al.
        Stereotactic body radiotherapy for primary management of early-stage, low-to intermediate-risk prostate cancer: report of the American Society for Therapeutic Radiology and Oncology Emerging Technology Committee.
        Int J Radiat Oncol Biol Phys. 2010; 76: 1297-1304
        • Martin J.
        • Keall P.
        • Siva S.
        • Greer P.
        • Christie D.
        • Moore K.
        • et al.
        TROG 18.01 phase III randomised clinical trial of the Novel Integration of New prostate radiation schedules with adJuvant Androgen deprivation: NINJA study protocol.
        BMJ Open. 2019; 9e030731
        • Schweikard A.
        • Shiomi H.
        • Adler J.
        Respiration tracking in radiosurgery.
        Med Phys. 2004; 31: 2738-2741
        • Schnarr E.
        • Beneke M.
        • Casey D.
        • Chao E.
        • Chappelow J.
        • Cox A.
        • et al.
        Feasibility of real-time motion management with helical tomotherapy.
        Med Phys. 2018; 45: 1329-1337
        • Takayama K.
        • Mizowaki T.
        • Kokubo M.
        • Kawada N.
        • Nakayama H.
        • Narita Y.
        • et al.
        Initial validations for pursuing irradiation using a gimbals tracking system.
        Radiother Oncol. 2009; 93: 45-49
        • Korreman S.S.
        Motion in radiotherapy: photon therapy.
        Phys Med Biol. 2012; 57: R161-R191
        • Lovelock D.M.
        • Messineo A.P.
        • Cox B.W.
        • Kollmeier M.A.
        • Zelefsky M.J.
        Continuous monitoring and intrafraction target position correction during treatment improves target coverage for patients undergoing SBRT prostate therapy.
        Int J Radiat Oncol Biol Phys. 2015; 91: 588-594
        • Keall P.J.
        • Ng J.A.
        • Juneja P.
        • O'Brien R.T.
        • Huang C.-Y.
        • Colvill E.
        • et al.
        Real-time 3D image guidance using a standard LINAC: measured motion, accuracy, and precision of the first prospective clinical trial of kilovoltage intrafraction monitoring-guided gating for prostate cancer radiation therapy.
        Int J Radiat Oncol Biol Phys. 2016; 94: 1015-1021
        • Keall P.J.
        • Colvill E.
        • O’Brien R.
        • Ng J.A.
        • Poulsen P.R.
        • Eade T.
        • et al.
        The first clinical implementation of electromagnetic transponder-guided MLC tracking.
        Med Phys. 2014; 41
        • Colvill E.
        • Booth J.T.
        • O'Brien R.T.
        • Eade T.N.
        • Kneebone A.B.
        • Poulsen P.R.
        • et al.
        Multileaf collimator tracking improves dose delivery for prostate cancer radiation therapy: results of the first clinical trial.
        Int J Radiat Oncol Biol Phys. 2015; 92: 1141-1147
        • Keall P.J.
        • Nguyen D.T.
        • O'Brien R.
        • Caillet V.
        • Hewson E.
        • Poulsen P.R.
        • et al.
        The first clinical implementation of real-time image-guided adaptive radiotherapy using a standard linear accelerator.
        Radiother Oncol. 2018; 127: 6-11
        • Booth J.T.
        • Caillet V.
        • Hardcastle N.
        • O’Brien R.
        • Szymura K.
        • Crasta C.
        • et al.
        The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.
        Radiother Oncol. 2016; 121: 19-25
        • Keall P.
        • Nguyen D.T.
        • O’Brien R.
        • Booth J.
        • Greer P.
        • Poulsen P.
        • et al.
        Stereotactic prostate adaptive radiotherapy utilising kilovoltage intrafraction monitoring: the TROG 15.01 SPARK trial.
        BMC Cancer. 2017; 17: 180
        • Poulsen P.R.
        • Cho B.
        • Langen K.
        • Kupelian P.
        • Keall P.J.
        Three-dimensional prostate position estimation with a single x-ray imager utilizing the spatial probability density.
        Phys Med Biol. 2008; 53: 4331
        • Tehrani J.N.
        • O’Brien R.T.
        • Poulsen P.R.
        • Keall P.
        Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm.
        Phys Med Biol. 2013; 58: 8517-8533
        • Hewson E.A.
        • Nguyen D.T.
        • O’Brien R.
        • Kim J.H.
        • Montanaro T.
        • Moodie T.
        • et al.
        The accuracy and precision of the KIM motion monitoring system used in the multi-institutional TROG 15.01 Stereotactic Prostate Ablative Radiotherapy with KIM (SPARK) trial.
        Med Phys. 2019; 46: 4725-4737
        • Keall P.
        • Nguyen D.T.
        • O'Brien R.
        • Hewson E.
        • Ball H.
        • Poulsen P.
        • et al.
        Real-Time Image-Guided Ablative Prostate Cancer Radiation Therapy: Results from the TROG 15.01 SPARK Trial.
        Int J Radiat Oncol Biol Phys. 2020;
        • Poulsen P.R.
        • Schmidt M.L.
        • Keall P.
        • Worm E.S.
        • Fledelius W.
        • Hoffmann L.
        A method of dose reconstruction for moving targets compatible with dynamic treatments.
        Med Phys. 2012; 39: 6237-6246
        • Worm E.S.
        • Høyer M.
        • Hansen R.
        • Larsen L.P.
        • Weber B.
        • Grau C.
        • et al.
        A prospective cohort study of gated stereotactic liver radiation therapy using continuous internal electromagnetic motion monitoring.
        Int J Radiat Oncol Biol Phys. 2018; 101: 366-375
        • Poulsen P.R.
        • Fledelius W.
        • Cho B.
        • Keall P.
        Image-based dynamic multileaf collimator tracking of moving targets during intensity-modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2012; 83: e265-e271
        • Wisotzky E.
        • O'Brien R.
        • Keall P.J.
        A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy.
        Med Phys. 2016; 43: 132-136
        • Nguyen D.T.
        • O'Brien R.
        • Kim J.-H.
        • Huang C.-Y.
        • Wilton L.
        • Greer P.
        • et al.
        The first clinical implementation of a real-time six degree of freedom target tracking system during radiation therapy based on Kilovoltage Intrafraction Monitoring (KIM).
        Radiother Oncol. 2017; 123: 37-42
        • Langen K.M.
        • Willoughby T.R.
        • Meeks S.L.
        • Santhanam A.
        • Cunningham A.
        • Levine L.
        • et al.
        Observations on real-time prostate gland motion using electromagnetic tracking.
        Int J Radiat Oncol Biol Phys. 2008; 71: 1084-1090
        • Steiner E.
        • Georg D.
        • Goldner G.
        • Stock M.
        Prostate and patient intrafraction motion: impact on treatment time-dependent planning margins for patients with endorectal balloon.
        Int J Radiat Oncol Biol Phys. 2013; 86: 755-761
        • Mantz C.
        • Fernandez E.
        • Zucker I.
        • Harrison S.
        A phase II trial of real-time target tracking SBRT for low-risk prostate cancer utilizing the Calypso 4D localization system: patient reported health-related quality of life and toxicity outcomes.
        Int J Radiat Oncol Biol Phys. 2010; 78: S57-S58
        • Willoughby T.R.
        • Kupelian P.A.
        • Pouliot J.
        • Shinohara K.
        • Aubin M.
        • Roach III, M.
        • et al.
        Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer.
        Int J Radiat Oncol Biol Phys. 2006; 65: 528-534
        • Franz A.
        • Schmitt D.
        • Seitel A.
        • Chatrasingh M.
        • Echner G.
        • Oelfke U.
        • et al.
        Standardized accuracy assessment of the calypso wireless transponder tracking system.
        Phys Med Biol. 2014; 59: 6797
        • Katz A.J.
        CyberKnife radiosurgery for prostate cancer.
        Technol Cancer Res Treat. 2010; 9: 463-472
        • Colvill E.
        • Booth J.
        • Nill S.
        • Fast M.
        • Bedford J.
        • Oelfke U.
        • et al.
        A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking.
        Radiother Oncol. 2016; 119: 159-165
        • Ghadjar P.
        • Fiorino C.
        • af Rosenschöld P.M.
        • Pinkawa M.
        • Zilli T.
        • van Der Heide U.A.
        ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer.
        Radiother Oncol. 2019; 141: 5-13
        • Wolf J.
        • Nicholls J.
        • Hunter P.
        • Nguyen D.T.
        • Keall P.
        • Martin J.
        Dosimetric impact of intrafraction rotations in stereotactic prostate radiotherapy: A subset analysis of the TROG 15.01 SPARK trial.
        Radiother Oncol. 2019; 136: 143-147
        • D'Souza W.D.
        • Naqvi S.A.
        • Yu C.X.
        Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study.
        Phys Med Biol. 2005; 50: 4021-4033
        • Menten M.J.
        • Guckenberger M.
        • Herrmann C.
        • Krauß A.
        • Nill S.
        • Oelfke U.
        • et al.
        Comparison of a multileaf collimator tracking system and a robotic treatment couch tracking system for organ motion compensation during radiotherapy.
        Med Phys. 2012; 39: 7032-7041
        • Hansen R.
        • Ravkilde T.
        • Worm E.S.
        • Toftegaard J.
        • Grau C.
        • Macek K.
        • et al.
        Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator.
        Med Phys. 2016; 43: 2387-2398
        • Ehrbar S.
        • Schmid S.
        • Jöhl A.
        • Klöck S.
        • Guckenberger M.
        • Riesterer O.
        • et al.
        Comparison of multi-leaf collimator tracking and treatment-couch tracking during stereotactic body radiation therapy of prostate cancer.
        Radiother Oncol. 2017; 125: 445-452
        • Wu J.
        • Ruan D.
        • Cho B.
        • Sawant A.
        • Petersen J.
        • Newell L.J.
        • et al.
        Electromagnetic detection and real-time DMLC adaptation to target rotation during radiotherapy.
        Int J Radiat Oncol Biol Phys. 2012; 82: e545-e553
        • Ge Y.
        • O’Brien R.T.
        • Shieh C.C.
        • Booth J.T.
        • Keall P.J.
        Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator.
        Med Phys. 2014; 41061703
        • Ludlum E.
        • Mu G.
        • Weinberg V.
        • Roach III, M.
        • Verhey L.J.
        • Xia P.
        An algorithm for shifting MLC shapes to adjust for daily prostate movement during concurrent treatment with pelvic lymph nodesa).
        Med Phys. 2007; 34: 4750-4756
        • Toftegaard J.
        • Hansen R.
        • Ravkilde T.
        • Macek K.
        • Poulsen P.R.
        An experimentally validated couch and MLC tracking simulator used to investigate hybrid couch-MLC tracking.
        Med Phys. 2017; 44: 798-809
        • Ng Jin A
        • Booth Jeremy T
        • O’Brien Ricky T
        • Colvill Emma
        • Huang Chen-Yu
        • Poulsen Per R
        • et al.
        Quality assurance for the clinical implementation of kilovoltage intrafraction monitoring for prostate cancer VMAT.
        Med Phys. 2014; 41