Advertisement
Original Article| Volume 150, P253-261, September 2020

Download started.

Ok

A multimodal treatment of carbon ions irradiation, miRNA-34 and mTOR inhibitor specifically control high-grade chondrosarcoma cancer stem cells

  • Guillaume Vares
    Correspondence
    Corresponding authors at: Cell Signal Unit, OIST, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan (G. Vares). French Atomic Energy Commission, 18 Route du Panorama, BP6, Fontenay-aux-Roses 92265 CEDEX, France (Y. Saintigny).
    Affiliations
    Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
    Search for articles by this author
  • Vidhula Ahire
    Affiliations
    Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France

    Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
    Search for articles by this author
  • Shigeaki Sunada
    Affiliations
    Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan

    Department of Molecular Genetics, Tokyo Medical and Dental University (TMDU), Japan
    Search for articles by this author
  • Eun Ho Kim
    Affiliations
    Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
    Search for articles by this author
  • Sei Sai
    Affiliations
    Department of Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
    Search for articles by this author
  • François Chevalier
    Affiliations
    Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France

    Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
    Search for articles by this author
  • Paul-Henri Romeo
    Affiliations
    Research Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS), François Jacob Institute of Biology, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France
    Search for articles by this author
  • Tadashi Yamamoto
    Affiliations
    Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Japan
    Search for articles by this author
  • Tetsuo Nakajima
    Affiliations
    Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
    Search for articles by this author
  • Yannick Saintigny
    Correspondence
    Corresponding authors at: Cell Signal Unit, OIST, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan (G. Vares). French Atomic Energy Commission, 18 Route du Panorama, BP6, Fontenay-aux-Roses 92265 CEDEX, France (Y. Saintigny).
    Affiliations
    Research Laboratory and Open Facility for Radiation Biology with Accelerated Ions (LARIA), CEA/DRF/IBFJ/IRCM, Caen, France

    Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Normandie Univ/ENSICAEN/UNICAEN/CEA/CNRS, Caen, France
    Search for articles by this author

      Highlights

      • Chondrosarcoma stem cells (ChSCs) are radioresistant and are suppressed by miR-34.
      • mTOR inhibition by Rapamycin targets ChSCs via FOXO3 and miR-34.
      • Combination of carbon-ion therapy with mTOR inhibitors effectively controls ChSCs.

      Abstract

      Background and purpose

      High-grade chondrosarcomas are chemo- and radio-resistant cartilage-forming tumors of bone that often relapse and metastase. Thus, new therapeutic strategies are urgently needed.

      Material and methods

      Chondrosarcoma cells (CH-2879) were exposed to carbon-ion irradiation, combined with miR-34 mimic and/or rapamycin administration. The effects of treatment on cancer stem cells, stemness-associated phenotype, radioresistance and tumor-initiating properties were evaluated.

      Results

      We show that high-grade chondrosarcoma cells contain a population of radioresistant cancer stem cells that can be targeted by a combination of carbon-ion therapy, miR-34 mimic administration and/or rapamycin treatment that triggers FOXO3 and miR-34 over-expression. mTOR inhibition by rapamycin triggered FOXO3 and miR-34, leading to KLF4 repression.

      Conclusion

      Our results show that particle therapy combined with molecular treatments effectively controls cancer stem cells and may overcome treatment resistance of high-grade chondrosarcoma.

      Abbreviations:

      ALDH (aldehyde dehydrogenase), CFE (colony forming efficiency), CS (chondrosarcoma), CSC (cancer stem cell), LET (linear energy transfer), mTOR (mammalian target of rapamycin), NTCP (normal tissue complication probability), OER (oxygen enhancement ratio), PARP (poly ADP ribose polymerase), RBE (relative biological effectiveness), TCP (tumor control probability)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leddy L.R.
        • Holmes R.E.
        Chondrosarcoma of bone.
        in: Peabody T.D. Attar S. orthopaedic oncology: primary and metastatic tumors of the skeletal system. Springer International Publishing, Cham2014: 117-130https://doi.org/10.1007/978-3-319-07323-1_6
        • van Maldegem A.M.
        • Bovée J.V.
        • Gelderblom H.
        Comprehensive analysis of published studies involving systemic treatment for chondrosarcoma of bone between 2000 and 2013.
        Clin Sarcoma Res. 2014; 4: 11https://doi.org/10.1186/2045-3329-4-11
        • Gatfield E.R.
        • Noble D.J.
        • Barnett G.C.
        • Early N.Y.
        • Hoole A.C.F.
        • Kirkby N.F.
        • et al.
        Tumour volume and dose influence outcome after surgery and high-dose photon radiotherapy for chordoma and chondrosarcoma of the skull base and spine.
        Clin Oncol. 2018; 30: 243-253https://doi.org/10.1016/j.clon.2018.01.002
        • Sanusi O.
        • Arnaout O.
        • Rahme R.J.
        • Horbinski C.
        • Chandler J.P.
        Surgical Resection and Adjuvant Radiation Therapy in the Treatment of Skull Base Chordomas.
        World Neurosurg. 2018; 115: e13-e21https://doi.org/10.1016/j.wneu.2018.02.127
        • Polychronidou G.
        • Karavasilis V.
        • Pollack S.M.
        • Huang P.H.
        • Lee A.
        • Jones R.L.
        Novel therapeutic approaches in chondrosarcoma.
        Future Oncol. 2017; 13: 637-648https://doi.org/10.2217/fon-2016-0226
        • Prager B.C.
        • Xie Q.
        • Bao S.
        • Rich J.N.
        Cancer stem cells: the architects of the tumor ecosystem.
        Cell Stem Cell. 2019; 24: 41-53https://doi.org/10.1016/j.stem.2018.12.009
        • Schulz A.
        • Meyer F.
        • Dubrovska A.
        • Borgmann K.
        Cancer stem cells and radioresistance: DNA repair and beyond.
        Cancers. 2019; 11: 862https://doi.org/10.3390/cancers11060862
        • Boehme K.A.
        • Schleicher S.B.
        • Traub F.
        • Rolauffs B.
        Chondrosarcoma: A rare misfortune in aging human cartilage? The role of stem and progenitor cells in proliferation, malignant degeneration and therapeutic resistance.
        Int J Mol Sci. 2018; 19: 311https://doi.org/10.3390/ijms19010311
        • Heymann D.
        • Brown H.K.
        • Tellez-Gabriel M.
        Cancer stem cells in osteosarcoma.
        Cancer Lett. 2017; 386: 189-195
        • Loeffler J.S.
        • Durante M.
        Charged particle therapy—optimization, challenges and future directions.
        Nat Rev Clin Oncol. 2013; 10: 411-424https://doi.org/10.1038/nrclinonc.2013.79
        • Sai S.
        • Suzuki M.
        • Kim E.H.
        • Hayashi M.
        • Vares G.
        • Yamamoto N.
        • et al.
        Effects of carbon ion beam alone or in combination with cisplatin on malignant mesothelioma cells in vitro.
        Oncotarget. 2017; 9: 14849-14861https://doi.org/10.18632/oncotarget.23756
        • Sai S.
        • Vares G.
        • Kim E.H.
        • Karasawa K.
        • Wang B.
        • Nenoi M.
        • et al.
        Carbon ion beam combined with cisplatin effectively disrupts triple negative breast cancer stem-like cells in vitro.
        Mol Cancer. 2015; 14: 166https://doi.org/10.1186/s12943-015-0429-7
        • Sai S.
        • Wakai T.
        • Vares G.
        • Yamada S.
        • Kamijo T.
        • Kamada T.
        • et al.
        Combination of carbon ion beam and gemcitabine causes irreparable DNA damage and death of radioresistant pancreatic cancer stem-like cells in vitro and in vivo.
        Oncotarget. 2015; 6: 5517-5535
        • Bertrand G.
        • Maalouf M.
        • Boivin A.
        • Battiston-Montagne P.
        • Beuve M.
        • Levy A.
        • et al.
        Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation.
        Stem Cell Rev and Rep. 2014; 10: 114-126https://doi.org/10.1007/s12015-013-9467-y
        • Lesueur P.
        • Chevalier F.
        • El-Habr E.A.
        • Junier M.-P.
        • Chneiweiss H.
        • Castera L.
        • et al.
        Radiosensitization effect of talazoparib, a parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation.
        Sci Rep. 2018; 8: 3664https://doi.org/10.1038/s41598-018-22022-4
        • Lepleux C.
        • Marie-Brasset A.
        • Temelie M.
        • Boulanger M.
        • Brotin É.
        • Goldring M.B.
        • et al.
        Bystander effectors of chondrosarcoma cells irradiated at different LET impair proliferation of chondrocytes.
        J Cell Commun Signal. 2019; https://doi.org/10.1007/s12079-019-00515-9
        • Durante M.
        • Orecchia R.
        • Loeffler J.S.
        Charged-particle therapy in cancer: clinical uses and future perspectives.
        Nat Rev Clin Oncol. 2017; 14: 483-495https://doi.org/10.1038/nrclinonc.2017.30
        • Gil-Benso R.
        • Lopez-Gines C.
        • Lopez-Guerrero J.A.
        • Carda C.
        • Callaghan R.C.
        • Navarro S.
        • et al.
        Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin.
        Lab Invest. 2003; 83: 877-887
        • Vares G.
        • Sai S.
        • Wang B.
        • Fujimori A.
        • Nenoi M.
        • Nakajima T.
        Progesterone generates cancer stem cells through membrane progesterone receptor-triggered signaling in basal-like human mammary cells.
        Cancer Lett. 2015; 362: 167-173https://doi.org/10.1016/j.canlet.2015.03.030
        • Franken N.A.
        • Rodermond H.M.
        • Stap J.
        • Haveman J.
        • van Bree C.
        Clonogenic assay of cells in vitro.
        Nat Protoc. 2006; 1: 2315-2319https://doi.org/10.1038/nprot.2006.339
      1. Harris VM. Protein Detection by simple Western™ analysis. In: Kurien BT, Scofield RH, editors. Western blotting: methods and protocols, New York, NY: Springer New York; 2015, p. 465–468. https://doi.org/10.1007/978-1-4939-2694-7_47.

        • Tomayko M.M.
        • Reynolds C.P.
        Determination of subcutaneous tumor size in athymic (nude) mice.
        Cancer Chemother Pharmacol. 1989; 24: 148-154https://doi.org/10.1007/bf00300234
        • Vares G.
        • Wang B.
        • Ishii-Ohba H.
        • Nenoi M.
        • Nakajima T.
        Diet-induced obesity modulates epigenetic responses to ionizing radiation in mice.
        PLoS ONE. 2014; 9e106277https://doi.org/10.1371/journal.pone.0106277
        • Tirino V.
        • Desiderio V.
        • Paino F.
        • De Rosa A.
        • Papaccio F.
        • Fazioli F.
        • et al.
        Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo.
        FASEB J. 2011; 25: 2022-2030https://doi.org/10.1096/fj.10-179036
        • Fujiwara T.
        • Ozaki T.
        Overcoming therapeutic resistance of bone sarcomas: overview of the molecular mechanisms and therapeutic targets for bone sarcoma stem cells.
        Stem Cells Int. 2016; 2016https://doi.org/10.1155/2016/2603092
        • Gibbs C.P.
        • Kukekov V.G.
        • Reith J.D.
        • Tchigrinova O.
        • Suslov O.N.
        • Scott E.W.
        • et al.
        Stem-like cells in bone sarcomas: implications for tumorigenesis.
        Neoplasia. 2005; 7: 967-976
        • Lee C.-H.
        • Yu C.-C.
        • Wang B.-Y.
        • Chang W.-W.
        Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs.
        Oncotarget. 2015; 7: 1215-1226
        • Guessous F.
        • Zhang Y.
        • Kofman A.
        • Catania A.
        • Li Y.
        • Schiff D.
        • et al.
        microRNA-34a is tumor suppressive in brain tumors and glioma stem cells.
        Cell Cycle. 2010; 9: 1031-1036https://doi.org/10.4161/cc.9.6.10987
        • Liu C.
        • Kelnar K.
        • Liu B.
        • Chen X.
        • Calhoun-Davis T.
        • Li H.
        • et al.
        The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.
        Nat Med. 2011; 17: 211-215https://doi.org/10.1038/nm.2284
        • Nalls D.
        • Tang S.N.
        • Rodova M.
        • Srivastava R.K.
        • Shankar S.
        Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells.
        PLoS ONE. 2011; 6e24099https://doi.org/10.1371/journal.pone.0024099
        • Misso G.
        • Di Martino M.T.
        • De Rosa G.
        • Farooqi A.A.
        • Lombardi A.
        • Campani V.
        • et al.
        Mir-34: a new weapon against cancer?.
        Mol Ther Nucleic Acids. 2014; 3e194https://doi.org/10.1038/mtna.2014.47
        • Zhang Y.-X.
        • van Oosterwijk J.G.
        • Sicinska E.
        • Moss S.
        • Remillard S.P.
        • van Wezel T.
        • et al.
        Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.
        Clin Cancer Res. 2013; https://doi.org/10.1158/1078-0432.CCR-12-3647
        • Perez J.
        • Decouvelaere A.V.
        • Pointecouteau T.
        • Pissaloux D.
        • Michot J.P.
        • Besse A.
        • et al.
        Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model.
        PLoS ONE. 2012; 7e32458https://doi.org/10.1371/journal.pone.0032458
        • Bernstein-Molho R.
        • Kollender Y.
        • Issakov J.
        • Bickels J.
        • Dadia S.
        • Flusser G.
        • et al.
        Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas.
        Cancer Chemother Pharmacol. 2012; 70: 855-860https://doi.org/10.1007/s00280-012-1968-x
        • Thornton K.A.
        • Chen A.R.
        • Trucco M.M.
        • Shah P.
        • Wilky B.A.
        • Gul N.
        • et al.
        A dose-finding study of temsirolimus and liposomal doxorubicin for patients with recurrent and refractory bone and soft tissue sarcoma.
        Int J Cancer. 2013; 133: 997-1005https://doi.org/10.1002/ijc.28083
        • Hay N.
        Interplay between FOXO, TOR, and Akt.
        Biochim Biophys Acta (BBA) – Mol Cell Res. 2011; 1813: 1965-1970https://doi.org/10.1016/j.bbamcr.2011.03.013
        • Fiorenza F.
        • Abudu A.
        • Grimer R.J.
        • Carter S.R.
        • Tillman R.M.
        • Ayoub K.
        • et al.
        Risk factors for survival and local control in chondrosarcoma of bone.
        J Bone Joint Surg Br. 2002; 84: 93-99
        • Eyler C.E.
        • Rich J.N.
        Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis.
        J Clin Oncol. 2008; 26: 2839-2845https://doi.org/10.1200/JCO.2007.15.1829
        • Baumann M.
        • Krause M.
        • Hill R.
        Exploring the role of cancer stem cells in radioresistance.
        Nat Rev Cancer. 2008; 8: 545-554https://doi.org/10.1038/nrc2419
        • Rich J.N.
        Cancer stem cells in radiation resistance.
        Cancer Res. 2007; 67: 8980-8984https://doi.org/10.1158/0008-5472.CAN-07-0895
      2. Vassalli G. Aldehyde dehydrogenases: Not just markers, but functional regulators of stem cells. Stem Cells Int 2019;2019. https://doi.org/10.1155/2019/3904645.

        • Dehghan Harati M.
        • Rodemann H.P.
        • Toulany M.
        Nanog signaling mediates radioresistance in ALDH-positive breast cancer cells.
        Int J Mol Sci. 2019; 20https://doi.org/10.3390/ijms20051151
        • Mele L.
        • Liccardo D.
        • Tirino V.
        Evaluation and isolation of cancer stem cells using ALDH activity assay.
        Methods Mol Biol. 2018; 1692: 43-48https://doi.org/10.1007/978-1-4939-7401-6_4
        • Clark D.W.
        • Palle K.
        Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets.
        Ann Transl Med. 2016; 4
        • Cui X.
        • Oonishi K.
        • Tsujii H.
        • Yasuda T.
        • Matsumoto Y.
        • Furusawa Y.
        • et al.
        Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays.
        Cancer Res. 2011; (canres.2926.2010)https://doi.org/10.1158/0008-5472.CAN-10-2926
        • Oonishi K.
        • Cui X.
        • Hirakawa H.
        • Fujimori A.
        • Kamijo T.
        • Yamada S.
        • et al.
        Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells.
        Radiother Oncol. 2012; 105: 258-265https://doi.org/10.1016/j.radonc.2012.08.009
        • Pattabiraman D.R.
        • Weinberg R.A.
        Tackling the cancer stem cells – what challenges do they pose?.
        Nat Rev Drug Discov. 2014; 13: 497-512https://doi.org/10.1038/nrd4253
        • Takahashi R.
        • Miyazaki H.
        • Ochiya T.
        The role of microRNAs in the regulation of cancer stem cells.
        Front Genet. 2014; 4https://doi.org/10.3389/fgene.2013.00295
        • Cheng C.-Y.
        • Hwang C.-I.
        • Corney D.C.
        • Flesken-Nikitin A.
        • Jiang L.
        • Öner G.M.
        • et al.
        miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment.
        Cell Rep. 2014; 6: 1000-1007https://doi.org/10.1016/j.celrep.2014.02.023
        • Yoshitaka T.
        • Kawai A.
        • Miyaki S.
        • Numoto K.
        • Kikuta K.
        • Ozaki T.
        • et al.
        Analysis of microRNAs expressions in chondrosarcoma.
        J Orthop Res. 2013; 31: 1992-1998https://doi.org/10.1002/jor.22457
        • Hermeking H.
        The miR-34 family in cancer and apoptosis.
        Cell Death Differ. 2010; 17: 193-199https://doi.org/10.1038/cdd.2009.56
        • Stebbing J.
        • Shah K.
        • Lit L.C.
        • Gagliano T.
        • Ditsiou A.
        • Wang T.
        • et al.
        LMTK3 confers chemo-resistance in breast cancer.
        Oncogene. 2018; 37: 3113-3130https://doi.org/10.1038/s41388-018-0197-0
        • Venkatesh V.
        • Nataraj R.
        • Thangaraj G.S.
        • Karthikeyan M.
        • Gnanasekaran A.
        • Kaginelli S.B.
        • et al.
        Targeting Notch signalling pathway of cancer stem cells.
        Stem Cell Investig. 2018; 5
        • Qi X.
        • Li Y.
        • Zhang Y.
        • Xu T.
        • Lu B.
        • Fang L.
        • et al.
        KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells.
        Acta Pharmacol Sin. 2019; 40: 546-555https://doi.org/10.1038/s41401-018-0050-6
        • Zhang H.-L.
        • Wang P.
        • Lu M.-Z.
        • Zhang S.-D.
        • Zheng L.
        c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells.
        Oncol Lett. 2019; 17: 4487-4493https://doi.org/10.3892/ol.2019.10081
        • Yu M.
        • Hao B.
        • Zhan Y.
        • Luo G.
        Krüppel-like factor 4 expression in solid tumor prognosis: a meta-analysis.
        Clin Chim Acta. 2018; 485: 50-59https://doi.org/10.1016/j.cca.2018.06.030
        • Zhang L.
        • Zhang L.
        • Xia X.
        • He S.
        • He H.
        • Zhao W.
        Krüppel-like factor 4 promotes human osteosarcoma growth and metastasis via regulating CRYAB expression.
        Oncotarget. 2016; 7: 30990-31000https://doi.org/10.18632/oncotarget.8824
        • Cittelly D.M.
        • Finlay-Schultz J.
        • Howe E.N.
        • Spoelstra N.S.
        • Axlund S.D.
        • Hendricks P.
        • et al.
        Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4.
        Oncogene. 2013; 32: 2555-2564https://doi.org/10.1038/onc.2012.275
        • Kang L.
        • Mao J.
        • Tao Y.
        • Song B.
        • Ma W.
        • Lu Y.
        • et al.
        MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway.
        Cancer Sci. 2015; 106: 700-708https://doi.org/10.1111/cas.12656
        • Pramanik D.
        • Campbell N.R.
        • Karikari C.
        • Chivukula R.
        • Kent O.A.
        • Mendell J.T.
        • et al.
        Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice.
        Mol Cancer Ther. 2011; 10: 1470-1480https://doi.org/10.1158/1535-7163.MCT-11-0152
        • Nwani N.G.
        • Condello S.
        • Wang Y.
        • Swetzig W.M.
        • Barber E.
        • Hurley T.
        • et al.
        A novel ALDH1A1 inhibitor targets cells with stem cell characteristics in ovarian cancer.
        Cancers. 2019; 11: 502https://doi.org/10.3390/cancers11040502
        • Yadav R.K.
        • Chauhan A.S.
        • Zhuang L.
        • Gan B.
        FoxO transcription factors in cancer metabolism.
        Semin Cancer Biol. 2018; 50: 65-76https://doi.org/10.1016/j.semcancer.2018.01.004
        • Chen C.-C.
        • Jeon S.-M.
        • Bhaskar P.T.
        • Nogueira V.
        • Sundararajan D.
        • Tonic I.
        • et al.
        FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor.
        Dev Cell. 2010; 18: 592-604https://doi.org/10.1016/j.devcel.2010.03.008
        • Mori S.
        • Nada S.
        • Kimura H.
        • Tajima S.
        • Takahashi Y.
        • Kitamura A.
        • et al.
        The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase.
        PLoS ONE. 2014; 9e88891https://doi.org/10.1371/journal.pone.0088891
        • Natarajan S.K.
        • Stringham B.A.
        • Mohr A.M.
        • Wehrkamp C.J.
        • Lu S.
        • Phillippi M.A.
        • et al.
        FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis.
        J Lipid Res. 2017; 58: 866-875https://doi.org/10.1194/jlr.M071357
        • Liu X.
        • Feng J.
        • Tang L.
        • Liao L.
        • Xu Q.
        • Zhu S.
        The regulation and function of miR-21-FOXO3a-miR-34b/c signaling in breast cancer.
        Int J Mol Sci. 2015; 16: 3148-3162https://doi.org/10.3390/ijms16023148
        • Ames E.
        • Canter R.J.
        • Grossenbacher S.K.
        • Mac S.
        • Smith R.C.
        • Monjazeb A.M.
        • et al.
        Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells.
        OncoImmunology. 2015; 4e1036212https://doi.org/10.1080/2162402X.2015.1036212
        • Diaz R.
        • Nguewa P.A.
        • Redrado M.
        • Manrique I.
        • Calvo A.
        Sunitinib reduces tumor hypoxia and angiogenesis, and radiosensitizes prostate cancer stem-like cells.
        Prostate. 2015; 75: 1137-1149https://doi.org/10.1002/pros.22980