Advertisement
Original Article| Volume 148, P229-234, July 2020

Download started.

Ok

4D CT image artifacts affect local control in SBRT of lung and liver metastases

      Highlights

      • First study that correlates 4D CT image quality to clinical outcome.
      • Retrospective study, based on 62 patients with 102 lung and liver metastases.
      • 4D CT artifacts negatively influence outcome (multivariate analysis p < 0.05).

      Abstract

      Background and purpose:4D CT images often contain artifacts that are suspected to affect treatment planning quality and clinical outcome of lung and liver SBRT. The present study investigates the correlation between the presence of artifacts in SBRT planning 4D CT data and local metastasis control.
      Materials and methods:The study includes 62 patients with 102 metastases (49 in the lung and 53 in the liver), treated between 2012 and 2016 with SBRT for mainly curative intent. For each patient, 10-phase 4D CT images were acquired and used for ITV definition and treatment planning. Follow-up intervals were 3 weeks after treatment and every 3–6 months thereafter. Based on the number and type of image artifacts, a strict rule-based two-class artifact score was introduced and assigned to the individual 4D CT data sets. Correlation between local control and artifact score (consensus rating based on two independent observers) were analyzed using uni- and multivariable Cox proportional hazards models with random effects. Metastatic site, target volume, metastasis motion, breathing irregularity-related measures, and clinical data (chemotherapy prior to SBRT, target dose, treatment fractionation) were considered as covariates.
      Results: Local recurrence was observed in 17/102 (17%) metastases. Significant univariable factors for local control were artifact score (severe CT artifacts vs. few CT artifacts; hazard ratio 8.22; 95%-CI 2.04–33.18) and mean patient breathing period ( > 4.8  s vs. 4.8  s; hazard ratio 3.58; 95%-CI 1.18–10.84). Following multivariable analysis, artifact score remained as dominating prognostic factor, although statistically not significant (hazard ratio 10.28; 95%-CI 0.57–184.24).
      Conclusion: The results support the hypothesis that image artifacts in 4D CT treatment planning data negatively influence clinical outcome in SBRT of lung and liver metastases, underlining the need to account for 4D CT artifacts and improve image quality.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Guckenberger M.
        • Baus W.W.
        • Blanck O.
        • Combs S.E.
        • Debus J.
        • Engenhart-Cabillic R.
        • Gauer T.
        • Grosu A.L.
        • Schmitt D.
        • Tanadini-Lang S.
        • et al.
        Definition and quality requirements for stereotactic radiotherapy: consensus statement from the degro/dgmp working group stereotactic radiotherapy and radiosurgery.
        Strahlenther Onkol. 2020; : 1-4
        • Miller K.D.
        • Siegel R.L.
        • Lin C.C.
        • Mariotto A.B.
        • Kramer J.L.
        • Rowland J.H.
        • Stein K.D.
        • Alteri R.
        • Jemal A.
        • et al.
        Cancer treatment and survivorship statistics, 2016.
        CA: A Cancer J Clinicians. 2016; 66: 271-289
        • Su T.-S.
        • Liang P.
        • Liang J.
        • Lu H.-Z.
        • Jiang H.-Y.
        • Cheng T.
        • Huang Y.
        • Tang Y.
        • Deng X.
        Long-term survival analysis of stereotactic ablative radiotherapy versus liver resection for small hepatocellular carcinoma.
        Int J Radiat Oncol Biol Phys. 2017; 98: 639-646
        • Timmerman R.
        • Paulus R.
        • Galvin J.
        • Michalski J.
        • Straube W.
        • Bradley J.
        • Fakiris A.
        • Bezjak A.
        • Videtic G.
        • Johnstone D.
        • et al.
        Stereotactic body radiation therapy for inoperable early stage lung cancer.
        Jama. 2010; 303: 1070-1076
        • Scorsetti M.
        • Arcangeli S.
        • Tozzi A.
        • Comito T.
        • Alongi F.
        • Navarria P.
        • et al.
        Is stereotactic body radiation therapy an attractive option for unresectable liver metastases? A preliminary report from a phase 2 trial.
        Int J Radiat Oncol Biol Phys. 2013; 86: 336-342
        • Onishi H.
        • Shirato H.
        • Nagata Y.
        • Hiraoka M.
        • Fujino M.
        • Gomi K.
        • Karasawa K.
        • Hayakawa K.
        • Niibe Y.
        • Takai Y.
        • et al.
        Stereotactic body radiotherapy (SBRT) for operable stage i non–small-cell lung cancer: can SBRT be comparable to surgery?.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1352-1358
        • Andratschke N.H.
        • Nieder C.
        • Heppt F.
        • Molls M.
        • Zimmermann F.
        Stereotactic radiation therapy for liver metastases: factors affecting local control and survival.
        Radiat Oncol. 2015; 10: 69
        • De Rose F.
        • Cozzi L.
        • Navarria P.
        • Ascolese A.
        • Clerici E.
        • Infante M.
        • Alloisio M.
        • Testori A.
        • Toschi L.
        • Finocchiaro G.
        • et al.
        Clinical outcome of stereotactic ablative body radiotherapy for lung metastatic lesions in non-small cell lung cancer oligometastatic patients.
        Clin Oncol. 2016; 28: 13-20
        • Klement R.
        • Guckenberger M.
        • Alheid H.
        • Allgäuer M.
        • Becker G.
        • Blanck O.
        • Boda-Heggemann J.
        • Brunner T.
        • Duma M.
        • Gerum S.
        • et al.
        Stereotactic body radiotherapy for oligo-metastatic liver disease–influence of pre-treatment chemotherapy and histology on local tumor control.
        Radiother Oncol. 2017; 123: 227-233
        • Keall P.J.
        • Mageras G.S.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • Kapatoes J.M.
        • Low D.A.
        • Murphy M.J.
        • Murray B.R.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM Task Group 76a.
        Med Phys. 2006; 33: 3874-3900
        • Hunjan S.
        • Starkschall G.
        • Prado K.
        • Dong L.
        • Balter P.
        Lack of correlation between external fiducial positions and internal tumor positions during breath-hold ct.
        Int J Radiat Oncol Biol Phys. 2010; 76: 1586-1591
        • Yamamoto T.
        • Langner U.
        • WLoo B.W.
        • Shen J.
        • Keall P.J.
        Retrospective analysis of artifacts in four-dimensional ct images of 50 abdominal and thoracic radiotherapy patients.
        Int J Radiat Oncol Biol Phys. 2008; 72: 1250-1258
        • Martin S.
        • O’Brien R.
        • Hofmann C.
        • Keall P.
        • Kipriditis J.
        An in silico performance characterization of respiratory motion guided 4DCT for high-quality low-dose lung cancer imaging.
        Phys Med Biol. 2018; 63155012
        • Werner R.
        • Hofmann C.
        • Mücke E.
        • Gauer T.
        Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning.
        Radiat Oncol. 2017; 12: 100
        • Persson G.F.
        • Nygaard D.E.
        • Brink C.
        • Jahn J.W.
        • af Rosenschöld P.M.
        • Specht L.
        • et al.
        Deviations in delineated GTV caused by artefacts in 4DCT.
        Radiother Oncol. 2010; 96: 61-66
      1. Sothmann T, Gauer T, Werner R. Influence of 4D CT motion artifacts on correspondence model-based 4D dose accumulation. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 1057, International Society for Optics and Photonics; 2018. p. 105760F.

        • Werner R.
        • Sentker T.
        • Madesta F.
        • Gauer T.
        • Hofmann C.
        Intelligent 4D CT sequence scanning (i4DCT): concept and performance evaluation.
        Med Phys. 2019; 46: 3462-3474
        • Pan T.
        Comparison of helical and cine acquisitions for 4D-CT imaging with multislice ct.
        Med Phys. 2005; 32: 627-634
        • Gauer T.
        • Sothmann T.
        • Blanck O.
        • Petersen C.
        • Werner R.
        Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.
        Strahlenther Onkol. 2018; 194: 570-579
        • Riley C.
        • Yang Y.
        • Li T.
        • Zhang Y.
        • Heron D.E.
        • Huq M.S.
        Dosimetric evaluation of the interplay effect in respiratory-gated rapidarc radiation therapy.
        Med Phys. 2014; 41011715
        • Ong C.L.
        • Dahele M.
        • Slotman B.J.
        • Verbakel W.F.
        Dosimetric impact of the interplay effect during stereotactic lung radiation therapy delivery using flattening filter-free beams and volumetric modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2013; 86: 743-748
      2. Werner R, Sothmann T, Madesta F, Gauer T, Hofmann C. Technical considerations for automated low-pitch spiral 4d ct scanning protocol selection. In: Medical Imaging 2018: Physics of Medical Imaging, Vol. 10573, International Society for Optics and Photonics; 2018. p. 105733Y.

        • Schmitt D.
        • Blanck O.
        • Gauer T.
        • Fix M.K.
        • Brunner T.B.
        • Fleckenstein J.
        • Loutfi-Krauss B.
        • Manser P.
        • Werner R.
        • Wilhelm M.-L.
        • et al.
        Technological quality requirements for stereotactic radiotherapy.
        Strahlenther Onkol. 2020; : 1-21