Advertisement

Patient specific outcomes of charged particle therapy for hepatocellular carcinoma – A systematic review and quantitative analysis

Published:January 02, 2019DOI:https://doi.org/10.1016/j.radonc.2018.12.012

      Highlights

      • CPT offers favorable dose distribution due to the physical properties of charged particles. This can potentially lead to high efficacy with low treatment morbidity.
      • In this review we summarized 16 studies, 17 cohorts and 1516 patients treated for HCC with CPT, with following findings:
      • Mean weighted overall survival across studies was 86%, 62%, 59% and 35% at 1, 2, 3 and 5 years, respectively. Mean weighted local control was 86%, 89%, 87% and 89% at 1, 2, 3 and 5 years, respectively.
      • Adjusted morbidity rates were: 54% for acute G1-2 toxicities and 6% for acute ≥G3 toxicities; 9% for late G1-2 toxicities and less than 4% for late ≥G3 toxicities.

      Abstract

      Hepatocellular carcinoma (HCC) is a raising condition world-wide. Most of patients are ineligible for surgery at diagnosis due to the advanced stage of the disease or poor medical condition of the patient. Charged particle therapy (CPT) is a radiotherapy modality showing promising results. The aim of this systematic review was to summarize current knowledge on patient-specific outcomes of CPT for HCC, including overall survival, local control, the effect of radiation dose and the toxicity burden. The systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). After comprehensive database search 17 cohorts (16 studies, 1516 patients) were included into qualitative and quantitative analyses; 11 of 16 studies were retrospective. Eleven studies were on protons, 2 studies were on protons and carbon ions and 4 on carbon ions alone, were identified. Median BED10 (biologically equivalent dose) range was 68.75–122.5 GyE. Mean weighted overall survival across studies was 86%, 62%, 59% and 35% at 1, 2, 3 and 5 years, respectively. Mean weighted local control was 86%, 89%, 87% and 89% at 1, 2, 3 and 5 years, respectively. Adjusted morbidity rates were: 54% for acute G1-2 toxicities and 6% for acute ≥G3 toxicities; 9% for late G1-2 toxicities and less than 4% for late ≥G3 toxicities. There was no treatment-associated mortality.

      Conclusions

      CPT offers high local control, acceptable overall survival and low post-treatment morbidity. Quality of findings, especially on toxicities, is decreased by incomplete reporting and retrospective designs of available studies. Therefore, there is a strong need for better reporting and prospective studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Galle P.R.
        • Forner A.
        • Llovet J.M.
        • Mazzaferro V.
        • Piscaglia F.
        • Raoul J.L.
        • et al.
        EASL Clinical Practice Guidelines: management of hepatocellular carcinoma.
        J Hepatol. 2018; 69 (Available from: https://doi.org/10.1016/j.jhep.2018.03.019): 182-236
        • Kobiela J.
        • Spychalski P.
        • Marvaso G.
        • Ciardo D.
        • Dell’Acqua V.
        • Kraja F.
        • et al.
        Ablative stereotactic radiotherapy for oligometastatic colorectal cancer: systematic review.
        Crit Rev Oncol Hematol. 2018;
        • Lühr A.
        • von Neubeck C.
        • Krause M.
        • Troost E.G.C.
        Relative biological effectiveness in proton beam therapy – Current knowledge and future challenges.
        Clin Transl Radiat Oncol. 2018; 9 (Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405630818300028): 35-41
        • Lühr A.
        • von Neubeck C.
        • Pawelke J.
        • Seidlitz A.
        • Peitzsch C.
        • Bentzen S.M.
        • et al.
        “Radiobiology of Proton Therapy”: results of an international expert workshop.
        Radiother Oncol. 2018; 128 (Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167814018302779): 56-67
        • Skinner H.D.
        • Hong T.S.
        • Krishnan S.
        Charged-Particle Therapy for hepatocellular carcinoma.
        Semin Radiat Oncol. 2011; 21 (Available from: http://linkinghub.elsevier.com/retrieve/pii/S105342961100049X): 278-286
        • Karger C.P.
        • Peschke P.
        RBE and related modeling in carbon-ion therapy.
        Phys Med Biol. 2017; 63 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/28976361): 01TR02
        • Petersen J.B.B.
        • Lassen Y.
        • Hansen A.T.
        • Muren L.P.
        • Grau C.
        • Høyer M.
        Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours.
        Acta Oncol (Madr). 2011; 50 (Available from: http://www.tandfonline.com/doi/full/10.3109/0284186X.2011.590526): 823-828
        • Tsujii H.
        • Tsuji H.
        • Inada T.
        • Maruhashi A.
        • Hayakawa Y.
        • Takada Y.
        • et al.
        Clinical results of fractionated proton therapy.
        Int J Radiat Oncol Biol Phys. 1993; 25: 49-60
        • Igaki H.
        • Mizumoto M.
        • Okumura T.
        • Hasegawa K.
        • Kokudo N.
        • Sakurai H.
        A systematic review of publications on charged particle therapy for hepatocellular carcinoma.
        Int J Clin Oncol. 2017; 23 (Available from http://link.springer.com/10.1007/s10147-017-1190-2): 423-433
        • Dionisi F.
        • Widesott L.
        • Lorentini S.
        • Amichetti M.
        Is there a role for proton therapy in the treatment of hepatocellular carcinoma? A systematic review.
        Radiother Oncol. 2014; 111 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/24560761): 1-10
        • Qi W.X.
        • Fu S.
        • Zhang Q.
        • Guo X.M.
        Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis.
        Radiother Oncol. 2015; 114 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/25497556): 289-295
        • Carvajal C.
        • Navarro-Martin A.
        • Cacicedo J.
        • Ramos R.
        • Guedea F.
        Stereotactic body radiotherapy for colorectal lung oligometastases: preliminary single-institution results.
        J BUON. 2015; 20: 158-165
        • Filippi A.R.
        • Badellino S.
        • Ceccarelli M.
        • Guarneri A.
        • Franco P.
        • Monagheddu C.
        • et al.
        Stereotactic ablative radiation therapy as first local therapy for lung oligometastases from colorectal cancer: a single-institution cohort study.
        Int J Radiat Oncol Biol Phys. 2015; 91: 524-529
        • Shiba S.
        • Abe T.
        • Shibuya K.
        • Katoh H.
        • Koyama Y.
        • Shimada H.
        • et al.
        Carbon ion radiotherapy for 80 years or older patients with hepatocellular carcinoma.
        BMC Cancer. 2017; 17 (Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033390318&doi=10.1186%2Fs12885-017-3724-4&partnerID=40&md5=7f670396102818b8ff429a65384c4b95): 721
        • Komatsu S.
        • Fukumoto T.
        • Demizu Y.
        • Miyawaki D.
        • Terashima K.
        • Sasaki R.
        • et al.
        Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma.
        Cancer. 2011; 117: 4890-4904
        • Yu J.I.
        • Yoo G.S.
        • Cho S.
        • Jung S.H.
        • Han Y.
        • Park S.
        • et al.
        Initial clinical outcomes of proton beam radiotherapy for hepatocellular carcinoma.
        Radiat Oncol J. 2018; 36: 25-34
        • Mizuhata M.
        • Takamatsu S.
        • Shibata S.
        • Bou S.
        • Sato Y.
        • Kawamura M.
        • et al.
        Proton beam therapy for hepatocellular carcinoma adjacent to the gastrointestinal tract without fiducial markers.
        Cancers (Basel). 2018; 10
        • Sorin Y.
        • Ikeda K.
        • Kawamura Y.
        • Fujiyama S.
        • Kobayashi M.
        • Hosaka T.
        • et al.
        Effectiveness of particle radiotherapy in various stages of hepatocellular carcinoma: a Pilot study.
        Liver Cancer. 2018; (Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044084771&doi=10.1159%2F000487311&partnerID=40&md5=4248b19e35948293f76cf481fdca37e5)
        • Kanai T.
        • Matsufuji N.
        • Miyamoto T.
        • Mizoe J.
        • Kamada T.
        • Tsuji H.
        • et al.
        Examination of GyE system for HIMAC carbon therapy.
        Int J Radiat Oncol. 2006; 64 (Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360301605027264): 650-656
      1. Spychalski P. Study materials for: “Patient specific outcomes of a charged particle therapy for hepatocellular carcinoma – a systematic review quantitative analysis.” [Internet]. 2018. Available from: 10.17605/OSF.IO/5NRV4.

        • Chiba T.
        • Tokuuye K.
        • Matsuzaki Y.
        Proton beam therapy for hepatocellular carcinoma: a retrospective review of 162 patients cancer therapy: clinical proton beam therapy for hepatocellular carcinoma: a retrospective review of 162 patients.
        Clin Cancer Res. 2005; 11: 3799-3805
        • Mizumoto M.
        • Tokuuye K.
        • Sugahara S.
        • Nakayama H.
        • Fukumitsu N.
        • Ohara K.
        • et al.
        Proton beam therapy for hepatocellular carcinoma adjacent to the porta hepatis.
        Int J Radiat Oncol Biol Phys. 2008; 71: 462-467
        • Bush D.A.
        • Kayali Z.
        • Grove R.
        • Slater J.D.
        The safety and efficacy of high-dose proton beam radiotherapy for hepatocellular carcinoma: a phase 2 prospective trial.
        Cancer. 2011; 117: 3053-3059
        • Kawashima M.
        • Kohno R.
        • Nakachi K.
        • Nishio T.
        • Mitsunaga S.
        • Ikeda M.
        • et al.
        Dose-volume histogram analysis of the safety of proton beam therapy for unresectable hepatocellular carcinoma.
        Int J Radiat Oncol Biol Phys. 2011; 79: 1479-1486
        • Lee S.U.
        • Park J.-W.
        • Kim T.H.
        • Kim Y.-J.
        • Woo S.M.
        • Koh Y.-H.
        • et al.
        Effectiveness and safety of proton beam therapy for advanced hepatocellular carcinoma with portal vein tumor thrombosis.
        Strahlenther Onkol. 2014; 190: 806-814
        • Hong T.S.
        • DeLaney T.F.
        • Mamon H.J.
        • Willett C.G.
        • Yeap B.Y.
        • Niemierko A.
        • et al.
        A prospective feasibility study of respiratory gated proton beam therapy for liver tumors.
        Pr Radiat Oncol. 2014; 4 (Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327929/pdf/nihms-531236.pdf): 316-322
        • Kim D.Y.
        • Park J.W.
        • Kim T.H.
        • Kim B.H.
        • Moon S.H.
        • Kim S.S.
        • et al.
        Risk-adapted simultaneous integrated boost-proton beam therapy (SIB-PBT) for advanced hepatocellular carcinoma with tumour vascular thrombosis.
        Radiother Oncol. 2017; 122 (Available from: http://dx.doi.org/10.1016/j.radonc.2016.12.014): 122-1229
        • Kimura K.
        • Nakamura T.
        • Ono T.
        • Azami Y.
        • Suzuki M.
        • Wada H.
        • et al.
        Clinical results of proton beam therapy for hepatocellular carcinoma over 5 cm.
        Hepatol Res. 2017; 47: 1368-1374
        • Komatsu S.
        • Fukumoto T.
        • Demizu Y.
        • Miyawaki D.
        • Terashima K.
        • Niwa Y.
        • et al.
        The effectiveness of particle radiotherapy for hepatocellular carcinoma associated with inferior vena cava tumor thrombus.
        J Gastroenterol. 2011; 46: 913-920
        • Kato H.
        • Tsujii H.
        • Miyamoto T.
        • Mizoe J.
        • Kamada T.
        • Tsuji H.
        • et al.
        Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis.
        Int J Radiat Oncol Biol Phys. 2004; 59: 1468-1476
        • Kasuya G.
        • Tsujii H.
        • Kasuya G.
        • Kato H.
        • Yasuda S.
        • Tsuji H.
        • et al.
        Progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma: combined analyses of 2 prospective trials.
        Cancer. 2017; : 3955-3965
        • Yamashita H.
        • Onishi H.
        • Matsumoto Y.
        • Murakami N.
        • Matsuo Y.
        • Nomiya T.
        • et al.
        Local effect of stereotactic body radiotherapy for primary and metastatic liver tumors in 130 Japanese patients.
        Radiat Oncol. 2014; 9 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/24886477): 112
        • Scorsetti M.
        • Comito T.
        • Cozzi L.
        • Clerici E.
        • Tozzi A.
        • Franzese C.
        • et al.
        The challenge of inoperable hepatocellular carcinoma (HCC): results of a single-institutional experience on stereotactic body radiation therapy (SBRT).
        J Cancer Res Clin Oncol. 2015; 141 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/25644863): 1301-1409
        • Jang Il, W.
        • Kim M.-S.
        • Bae S.H.
        • Cho C.K.
        • Yoo H.J.
        • Seo Y.S.
        • et al.
        High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma.
        Radiat Oncol. 2013; 8 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/24160944): 250
        • Bibault J.-E.
        • Dewas S.
        • Vautravers-Dewas C.
        • Hollebecque A.
        • Jarraya H.
        • Lacornerie T.
        • et al.
        Stereotactic body radiation therapy for hepatocellular carcinoma: prognostic factors of local control, overall survival, and toxicity. Villa E, editor.
        PLoS One. 2013; 8 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/24147002): e77472
        • Tateishi R.
        • Shiina S.
        • Teratani T.
        • Obi S.
        • Sato S.
        • Koike Y.
        • et al.
        Percutaneous radiofrequency ablation for hepatocellular carcinoma.
        Cancer. 2005; 103 (Available from: http://doi.wiley.com/10.1002/cncr.20892): 1201-1209
        • Leung H.W.C.
        • Chan A.L.F.
        Cost-utility of stereotactic radiation therapy versus proton beam therapy for inoperable advanced hepatocellular carcinoma.
        Oncotarget. 2017; 8: 75568-75576
        • Bujold A.
        • Massey C.A.
        • Kim J.J.
        • Brierley J.
        • Cho C.
        • Wong R.K.S.
        • et al.
        Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma.
        J Clin Oncol. 2013; 31 (Available from: http://www.ncbi.nlm.nih.gov/pubmed/23547075): 1631-1639
        • Rim C.H.
        • Kim C.Y.
        • Yang D.S.
        • Yoon W.S.
        Comparison of radiation therapy modalities for hepatocellular carcinoma with portal vein thrombosis: a meta-analysis and systematic review.
        Radiother Oncol. 2017; (Available from: https://www.sciencedirect.com/science/article/pii/S0167814017327305)
        • Komatsu S.
        • Murakami M.
        • Fukumoto T.
        • Hori Y.
        • Hishikawa Y.
        • Ku Y.
        Risk factors for survival and local recurrence after particle radiotherapy for single small hepatocellular carcinoma.
        Br J Surg. 2011; 98: 558-564