Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: An international meta-analysis of individual patient data

Published:September 18, 2018DOI:https://doi.org/10.1016/j.radonc.2018.08.025

      Highlights

      • Immunotherapy and radiosurgery are utilized for brain metastases but data are limited.
      • In this metaanalysis, concurrent therapy improved 1-year survival and brain control.
      • The overall rate of radionecrosis was 5.3%.
      • Prospective trials are needed to more accurately inform on this clinical scenario.

      Abstract

      Background and purpose

      While the combination of stereotactic radiosurgery (SRS) and immune checkpoint inhibitors (ICI) is becoming more widely used in the treatment of brain metastases (BM), there is a paucity of prospective data to validate both the safety and efficacy, as well as the optimal timing of these two therapies relative to one another.

      Methods

      A PICOS/PRISMA/MOOSE selection protocol was used to identify 17 studies across 15 institutions in 3 countries. Inclusion criteria were patients: diagnosed with BM; treated with SRS/ICI, either concurrently or non-concurrently; with at least one of the primary or secondary outcome measures reported. Weighted random effects meta-analyses using the DerSimonian and Laird method were performed. The primary outcome was 1-year overall survival (OS). Secondary outcomes were 1-year local control (LC), 1-year regional brain control (RBC), and radionecrosis incidence.

      Results

      A total of 534 patients with 1,570 BM were included. The 1-year OS was 64.6% and 51.6% for concurrent and non-concurrent therapy, respectively (p < 0.001). Local control at 1-year was 89.2% and 67.8% for concurrent and non-concurrent therapy, respectively (p = 0.09). The RBC at 1-year was 38.1% and 12.3% for concurrent and ICI administration prior to SRS, respectively (p = 0.049). The overall incidence of radionecrosis for all studies was 5.3%.

      Conclusions

      Concurrent administration of SRS/ICI may be associated with improved safety and efficacy versus sequential therapy. These findings, however, are hypothesis-generating and require further validation by ongoing and planned prospective trials.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nabors L.B.
        • Portnow J.
        • Ammirati M.
        • Baehring J.
        • Brem H.
        • Butowski N.
        • et al.
        Practice guidelines in Oncology – Central Nervous System Cancers, Version 1.2017.
        J Natl Compregensive Cancer Netw. 2017;
        • Pruitt A.A.
        Epidemiology, treatment, and complications of central nervous system metastases.
        Continuum (Minneap Minn). 2017; 23: 1580-1600
        • Bafaloukos D.
        • Gogas H.
        The treatment of brain metastases in melanoma patients.
        Cancer Treat Rev. 2004; 30: 515-520
        • Sampson J.H.
        • Carter Jr, J.H.
        • Friedman A.H.
        • Seigler H.F.
        Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma.
        J Neurosurg. 1998; 88: 11-20
        • Gibney G.T.
        • Forsyth P.A.
        • Sondak V.K.
        Melanoma in the brain: biology and therapeutic options.
        Melanoma Res. 2012; 22: 177-183
        • Fife K.M.
        • Colman M.H.
        • Stevens G.N.
        • Firth I.C.
        • Moon D.
        • Shannon K.F.
        • et al.
        Determinants of outcome in melanoma patients with cerebral metastases.
        J Clin Oncol. 2004; 22: 1293-1300
        • Davies M.A.
        • Liu P.
        • McIntyre S.
        • Kim K.B.
        • Papadopoulos N.
        • Hwu W.J.
        • et al.
        Prognostic factors for survival in melanoma patients with brain metastases.
        Cancer. 2011; 117: 1687-1696
        • Kipnis J.
        • Filiano A.J.
        Neuroimmunology in 2017: the central nervous system: privileged by immune connections.
        Nat Rev Immunol. 2017;
        • Keren-Shaul H.
        • Spinrad A.
        • Weiner A.
        • Matcovitch-Natan O.
        • Dvir-Szternfeld R.
        • Ulland T.K.
        • et al.
        A unique microglia type associated with restricting development of Alzheimer's disease.
        Cell. 2017; 169 (e17): 1276-1290
        • Berghoff A.S.
        • Preusser M.
        The inflammatory microenvironment in brain metastases: potential treatment target?.
        Chin Clin Oncol. 2015; 4: 21
        • Hodi F.S.
        • O'Day S.J.
        • McDermott D.F.
        • Weber R.W.
        • Sosman J.A.
        • Haanen J.B.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723
        • Robert C.
        • Thomas L.
        • Bondarenko I.
        • O'Day S.
        • Weber J.
        • Garbe C.
        • et al.
        Ipilimumab plus dacarbazine for previously untreated metastatic melanoma.
        N Engl J Med. 2011; 364: 2517-2526
        • Weber J.S.
        • D'Angelo S.P.
        • Minor D.
        • Hodi F.S.
        • Gutzmer R.
        • Neyns B.
        • et al.
        Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial.
        Lancet Oncol. 2015; 16: 375-384
        • Robert C.
        • Long G.V.
        • Brady B.
        • Dutriaux C.
        • Maio M.
        • Mortier L.
        • et al.
        Nivolumab in previously untreated melanoma without BRAF mutation.
        N Engl J Med. 2015; 372: 320-330
        • Robert C.
        • Ribas A.
        • Wolchok J.D.
        • Hodi F.S.
        • Hamid O.
        • Kefford R.
        • et al.
        Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial.
        Lancet. 2014; 384: 1109-1117
        • Andrews D.W.
        • Scott C.B.
        • Sperduto P.W.
        • Flanders A.E.
        • Gaspar L.E.
        • Schell M.C.
        • et al.
        Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial.
        Lancet. 2004; 363: 1665-1672
        • Brown P.D.
        • Jaeckle K.
        • Ballman K.V.
        • Farace E.
        • Cerhan J.H.
        • Anderson S.K.
        • et al.
        Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial.
        JAMA. 2016; 316: 401-409
        • Sharabi A.B.
        • Lim M.
        • DeWeese T.L.
        • Drake C.G.
        Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy.
        Lancet Oncol. 2015; 16: e498-e509
        • Lee Y.
        • Auh S.L.
        • Wang Y.
        • Burnette B.
        • Wang Y.
        • Meng Y.
        • et al.
        Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment.
        Blood. 2009; 114: 589-595
        • Lugade A.A.
        • Moran J.P.
        • Gerber S.A.
        • Rose R.C.
        • Frelinger J.G.
        • Lord E.M.
        Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor.
        J Immunol. 2005; 174: 7516-7523
        • Schaue D.
        • Ratikan J.A.
        • Iwamoto K.S.
        • McBride W.H.
        Maximizing tumor immunity with fractionated radiation.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1306-1310
        • Kamrava M.
        • Bernstein M.B.
        • Camphausen K.
        • Hodge J.W.
        Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: the Three Musketeers or just another quixotic combination?.
        Mol Biosyst. 2009; 5: 1262-1270
        • Chakraborty M.
        • Abrams S.I.
        • Coleman C.N.
        • Camphausen K.
        • Schlom J.
        • Hodge J.W.
        External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing.
        Cancer Res. 2004; 64: 4328-4337
        • Chakraborty M.
        • Abrams S.I.
        • Camphausen K.
        • Liu K.
        • Scott T.
        • Coleman C.N.
        • et al.
        Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy.
        J Immunol. 2003; 170: 6338-6347
        • Topalian S.L.
        • Drake C.G.
        • Pardoll D.M.
        Immune checkpoint blockade: a common denominator approach to cancer therapy.
        Cancer Cell. 2015; 27: 450-461
        • Tarrio M.L.
        • Grabie N.
        • Bu D.X.
        • Sharpe A.H.
        • Lichtman A.H.
        PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis.
        J Immunol. 2012; 188: 4876-4884
        • Laubli H.
        • Balmelli C.
        • Bossard M.
        • Pfister O.
        • Glatz K.
        • Zippelius A.
        Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma.
        J Immunother Cancer. 2015; 3: 11
      1. Howick J. Oxford Centre for Evidence-based Medicine – Levels of Evidence (March 2009). 2009.

        • Mathew M.
        • Tam M.
        • Ott P.A.
        • Pavlick A.C.
        • Rush S.C.
        • Donahue B.R.
        • et al.
        Ipilimumab in melanoma with limited brain metastases treated with stereotactic radiosurgery.
        Melanoma Res. 2013; 23: 191-195
        • Schoenfeld J.D.
        • Mahadevan A.
        • Floyd S.R.
        • Dyer M.A.
        • Catalano P.J.
        • Alexander B.M.
        • et al.
        Ipilmumab and cranial radiation in metastatic melanoma patients: a case series and review.
        J Immunother Cancer. 2015; 3: 50
        • Patel K.R.
        • Shoukat S.
        • Oliver D.E.
        • Chowdhary M.
        • Rizzo M.
        • Lawson D.H.
        • et al.
        Ipilimumab and stereotactic radiosurgery versus stereotactic radiosurgery alone for newly diagnosed melanoma brain metastases.
        Am J Clin Oncol. 2017; 40: 444-450
        • Chen L.
        • Douglass J.
        • Kleinberg L.
        • Ye X.
        • Marciscano A.E.
        • Forde P.M.
        • et al.
        Concurrent Immune checkpoint inhibitors and stereotactic radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma.
        Int J Radiat Oncol Biol Phys. 2018; (in press)
      2. Services USDoHaH. Common Terminology Criteria for Adverse Events (Version 4.03). 2010.

        • Silk A.W.
        • Bassetti M.F.
        • West B.T.
        • Tsien C.I.
        • Lao C.D.
        Ipilimumab and radiation therapy for melanoma brain metastases.
        Cancer Med. 2013; 2: 899-906
        • Ahmed K.A.
        • Stallworth D.G.
        • Kim Y.
        • Johnstone P.A.
        • Harrison L.B.
        • Caudell J.J.
        • et al.
        Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy.
        Ann Oncol. 2016; 27: 434-441
        • Kiess A.P.
        • Wolchok J.D.
        • Barker C.A.
        • Postow M.A.
        • Tabar V.
        • Huse J.T.
        • et al.
        Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment.
        Int J Radiat Oncol Biol Phys. 2015; 92: 368-375
        • Qian J.M.
        • Yu J.B.
        • Kluger H.M.
        • Chiang V.L.
        Timing and type of immune checkpoint therapy affect the early radiographic response of melanoma brain metastases to stereotactic radiosurgery.
        Cancer. 2016; 122: 3051-3058
        • Ahmed K.A.
        • Kim S.
        • Arrington J.
        • Naghavi A.O.
        • Dilling T.J.
        • Creelan B.C.
        • et al.
        Outcomes targeting the PD-1/PD-L1 axis in conjunction with stereotactic radiation for patients with non-small cell lung cancer brain metastases.
        J Neurooncol. 2017; 133: 331-338
        • Anderson E.S.
        • Postow M.A.
        • Wolchok J.D.
        • Young R.J.
        • Ballangrud A.
        • Chan T.A.
        • et al.
        Melanoma brain metastases treated with stereotactic radiosurgery and concurrent pembrolizumab display marked regression; efficacy and safety of combined treatment.
        J Immunother Cancer. 2017; 5: 76
        • Choong E.S.
        • Lo S.
        • Drummond M.
        • Fogarty G.B.
        • Menzies A.M.
        • Guminski A.
        • et al.
        Survival of patients with melanoma brain metastasis treated with stereotactic radiosurgery and active systemic drug therapies.
        Eur J Cancer. 2017; 75: 169-178
        • Cohen-Inbar O.
        • Shih H.H.
        • Xu Z.
        • Schlesinger D.
        • Sheehan J.P.
        The effect of timing of stereotactic radiosurgery treatment of melanoma brain metastases treated with ipilimumab.
        J Neurosurg. 2017; 127: 1007-1014
        • Gaudy-Marqueste C.
        • Dussouil A.S.
        • Carron R.
        • Troin L.
        • Malissen N.
        • Loundou A.
        • et al.
        Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery.
        Eur J Cancer. 2017; 84: 44-54
        • Skrepnik T.
        • Sundararajan S.
        • Cui H.
        • Stea B.
        Improved time to disease progression in the brain in patients with melanoma brain metastases treated with concurrent delivery of radiosurgery and ipilimumab.
        Oncoimmunology. 2017; 6e1283461
        • Williams N.L.
        • Wuthrick E.J.
        • Kim H.
        • Palmer J.D.
        • Garg S.
        • Eldredge-Hindy H.
        • et al.
        Phase 1 study of ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases.
        Int J Radiat Oncol Biol Phys. 2017; 99: 22-30
        • Yusuf M.B.
        • Amsbaugh M.J.
        • Burton E.
        • Chesney J.
        • Woo S.
        Peri-SRS administration of immune checkpoint therapy for melanoma metastatic to the brain: investigating efficacy and the effects of relative treatment timing on lesion response.
        World Neurosurg. 2017; 100 (e4): 632-640
        • Acharya S.
        • Mahmood M.
        • Mullen D.
        • Yang D.
        • Tsien C.I.
        • Huang J.
        • et al.
        Distant intracranial failure in melanoma brain metastases treated with stereotactic radiosurgery in the era of immunotherapy and targeted agents.
        Adv Radiat Oncol. 2017; 2: 572-580
        • Prins R.M.
        • Vo D.D.
        • Khan-Farooqi H.
        • Yang M.Y.
        • Soto H.
        • Economou J.S.
        • et al.
        NK and CD4 cells collaborate to protect against melanoma tumor formation in the brain.
        J Immunol. 2006; 177: 8448-8455
        • Louveau A.
        • Smirnov I.
        • Keyes T.J.
        • Eccles J.D.
        • Rouhani S.J.
        • Peske J.D.
        • et al.
        Structural and functional features of central nervous system lymphatic vessels.
        Nature. 2015; 523: 337-341
        • Louveau A.
        • Harris T.H.
        • Kipnis J.
        Revisiting the mechanisms of CNS immune privilege.
        Trends Immunol. 2015; 36: 569-577
        • Cao Y.
        • Tsien C.I.
        • Shen Z.
        • Tatro D.S.
        • Ten Haken R.
        • Kessler M.L.
        • et al.
        Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy.
        J Clin Oncol. 2005; 23: 4127-4136
        • Nakata H.
        • Yoshimine T.
        • Murasawa A.
        • Kumura E.
        • Harada K.
        • Ushio Y.
        • et al.
        Early blood-brain barrier disruption after high-dose single-fraction irradiation in rats.
        Acta Neurochir (Wien). 1995; 136 (discussion 6-7): 82-86
        • Bernstein M.B.
        • Garnett C.T.
        • Zhang H.
        • Velcich A.
        • Wattenberg M.M.
        • Gameiro S.R.
        • et al.
        Radiation-induced modulation of costimulatory and coinhibitory T-cell signaling molecules on human prostate carcinoma cells promotes productive antitumor immune interactions.
        Cancer Biother Radiopharm. 2014; 29: 153-161
        • Nishikawa H.
        • Sakaguchi S.
        Regulatory T cells in tumor immunity.
        Int J Cancer. 2010; 127: 759-767
        • Bernstein M.B.
        • Krishnan S.
        • Hodge J.W.
        • Chang J.Y.
        Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?.
        Nat Rev Clin Oncol. 2016; 13: 516-524
        • Park H.S.
        • Wang E.H.
        • Rutter C.E.
        • Corso C.D.
        • Chiang V.L.
        • Yu J.B.
        Changing practice patterns of Gamma Knife versus linear accelerator-based stereotactic radiosurgery for brain metastases in the US.
        J Neurosurg. 2016; 124: 1018-1024
        • Robert C.
        • Schachter J.
        • Long G.V.
        • Arance A.
        • Grob J.J.
        • Mortier L.
        • et al.
        Pembrolizumab versus Ipilimumab in Advanced Melanoma.
        N Engl J Med. 2015; 372: 2521-2532
        • Eisenhauer E.A.
        • Therasse P.
        • Bogaerts J.
        • Schwartz L.H.
        • Sargent D.
        • Ford R.
        • et al.
        New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
        Eur J Cancer. 2009; 45: 228-247
        • Okada H.
        • Weller M.
        • Huang R.
        • Finocchiaro G.
        • Gilbert M.R.
        • Wick W.
        • et al.
        Immunotherapy response assessment in neuro-oncology: a report of the RANO working group.
        Lancet Oncol. 2015; 16: e534-e542
        • Macdonald D.R.
        • Cascino T.L.
        • Schold Jr, S.C.
        • Cairncross J.G.
        Response criteria for phase II studies of supratentorial malignant glioma.
        J Clin Oncol. 1990; 8: 1277-1280
        • Wolchok J.D.
        • Hoos A.
        • O'Day S.
        • Weber J.S.
        • Hamid O.
        • Lebbe C.
        • et al.
        Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria.
        Clin Cancer Res. 2009; 15: 7412-7420
        • Sperduto P.W.
        • Chao S.T.
        • Sneed P.K.
        • Luo X.
        • Suh J.
        • Roberge D.
        • et al.
        Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients.
        Int J Radiat Oncol Biol Phys. 2010; 77: 655-661
        • Sperduto P.W.
        • Kased N.
        • Roberge D.
        • Xu Z.
        • Shanley R.
        • Luo X.
        • et al.
        Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases.
        J Clin Oncol. 2012; 30: 419-425

      Further reading

        • Liu Z.
        • Rich B.
        • Hanley J.A.
        Recovering the raw data behind a non-parametric survival curve.
        Syst Rev. 2014; 3: 151
        • Cochran W.G.
        The combination of estimates from different experiments.
        Biometrics. 1954; 10: 110-129
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634