Advertisement

Harnessing drug/radiation interaction through daily routine practice: Leverage medical and methodological point of view (MORSE 02-17 study)

      Abstract

      Background

      Safety profile of the interaction between anticancer drugs and radiation is a recurrent question. However, there are little data regarding the non-anticancer treatment (NACT)/radiation combinations. The aim of the present study was to investigate concomitant NACTs in patients undergoing radiotherapy in a French comprehensive cancer center.

      Methods

      A prospective cross-sectional study was conducted. All cancer patients undergoing a palliative or curative radiotherapy were consecutively screened for six weeks in 2016. Data on NACTs were collected.

      Results

      Out of 214 included patients, a NACT was concomitantly prescribed to 155 patients (72%), with a median number of 5 NACTs per patient (range: 1–12). The most prescribed drugs were anti-hypertensive drugs (101 patients, 47.2%), psychotropic drugs (n = 74, 34.6%), analgesics (n = 78, 36.4%), hypolipidemic drugs (n = 57, 26.6%), proton pump inhibitors (n = 46, 21.5%) and antiplatelet drugs (n = 38, 17.8%). Although 833 different molecules were reported, only 20 possible modifiers of cancer biological pathways (prescribed to 74 patients (34.5%)) were identified. Eight out of the 833 molecules (0.9%), belonging to six drug families, have been investigated in 28 ongoing or published clinical trials in combo with radiotherapy. They were prescribed to 63 patients (29.4%).

      Conclusion

      Drug-radiation interaction remains a subject of major interest, not only for conventional anticancer drugs, but also for NACTs. New trial designs are thus required.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bentzen S.M.
        • Harari P.M.
        • Bernier J.
        Exploitable mechanisms for combining drugs with radiation: concepts, achievements and future directions.
        Nat Clin Pract Oncol. 2007; 4: 172-180https://doi.org/10.1038/ncponc0744
        • Blaheta R.A.
        • Michaelis M.
        • Driever P.H.
        • Cinatl J.
        Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies.
        Med Res Rev. 2005; 25: 383-397https://doi.org/10.1002/med.20027
        • Chargari C.
        • Toillon R.A.
        • Macdermed D.
        • Castadot P.
        • Magné N.
        Concurrent hormone and radiation therapy in patients with breast cancer: what is the rationale?.
        Lancet Oncol. 2009; 10: 53-60https://doi.org/10.1016/S1470-2045(08)70333-4
        • Chen G.
        • Huang L.D.
        • Jiang Y.M.
        • Manji H.K.
        The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3.
        J Neurochem. 1999; 72: 1327-1330
        • Chin C.-C.
        • Li J.-M.
        • Lee K.-F.
        • Huang Y.-C.
        • Wang K.-C.
        • Lai H.-C.
        • et al.
        Selective β2-AR blockage suppresses colorectal cancer growth through regulation of EGFR-Akt/ERK1/2 signaling, G1-phase arrest, and apoptosis.
        J Cell Physiol. 2016; 231: 459-472https://doi.org/10.1002/jcp.25092
        • Cinatl J.
        • Kotchetkov R.
        • Blaheta R.
        • Driever P.H.
        • Vogel J.U.
        • Cinatl J.
        Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: enhancement by combination with interferon-alpha.
        Int J Oncol. 2002; 20: 97-106
        • Colevas A.D.
        • Brown J.M.
        • Hahn S.
        • Mitchell J.
        • Camphausen K.
        • Coleman C.N.
        Radiation Modifier Working Group of the National Cancer Institute. Development of investigational radiation modifiers.
        J Natl Cancer Inst. 2003; 95: 646-651
        • Eguchi K.
        • Suzuki M.
        • Ida S.
        • Kudo S.
        • Ando K.
        • Ebara T.
        • et al.
        Successful treatment of radiation-induced mucositis with proton pump inhibitor administration: a report of two laryngeal cancer cases.
        Auris Nasus Larynx. 2017; 44: 122-125https://doi.org/10.1016/j.anl.2016.05.006
        • Eikawa S.
        • Nishida M.
        • Mizukami S.
        • Yamazaki C.
        • Nakayama E.
        • Udono H.
        Immune-mediated antitumor effect by type 2 diabetes drug, metformin.
        Proc Natl Acad Sci USA. 2015; 112: 1809-1814https://doi.org/10.1073/pnas.1417636112
        • Fasih A.
        • Elbaz H.A.
        • Hüttemann M.
        • Konski A.A.
        • Zielske S.P.
        Radiosensitization of pancreatic cancer cells by metformin through the AMPK pathway.
        Radiat Res. 2014; 182: 50-59https://doi.org/10.1667/RR13568.1
        • Fendrich V.
        • Lopez C.L.
        • Manoharan J.
        • Maschuw K.
        • Wichmann S.
        • Baier A.
        • et al.
        Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.
        Endocr Relat Cancer. 2014; 21: 813-824https://doi.org/10.1530/ERC-14-0175
        • Gaist D.
        • Hallas J.
        • Friis S.
        • Hansen S.
        • Sørensen H.T.
        Statin use and survival following glioblastoma multiforme.
        Cancer Epidemiol. 2014; 38: 722-727https://doi.org/10.1016/j.canep.2014.09.010
        • Groll N.
        • Petrikat T.
        • Vetter S.
        • Wenz C.
        • Dengjel J.
        • Gretzmeier C.
        • et al.
        Inhibition of β-catenin signaling by phenobarbital in hepatoma cells in vitro.
        Toxicology. 2016; 370: 94-105https://doi.org/10.1016/j.tox.2016.09.018
        • Gu M.
        • Zhang Y.
        • Zhou X.
        • Ma H.
        • Yao H.
        • Ji F.
        Rabeprazole exhibits antiproliferative effects on human gastric cancer cell lines.
        Oncol Lett. 2014; 8: 1739-1744https://doi.org/10.3892/ol.2014.2354
        • Guo D.
        • Wang C.
        • Wang Q.
        • Qiao Z.
        • Tang H.
        Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response.
        Oncotarget. 2017; 8: 39640-39648https://doi.org/10.18632/oncotarget.17387
        • James N.D.
        • Sydes M.R.
        • Clarke N.W.
        • Mason M.D.
        • Dearnaley D.P.
        • Anderson J.
        • et al.
        STAMPEDE: systemic therapy for advancing or metastatic prostate cancer–a multi-arm multi-stage randomised controlled trial.
        Clin Oncol (R Coll Radiol). 2008; 20: 577-581https://doi.org/10.1016/j.clon.2008.07.002
        • Jang H.J.
        • Hong E.M.
        • Kim M.
        • Kim J.H.
        • Jang J.
        • Park S.W.
        • et al.
        Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer.
        Oncotarget. 2016; 7: 46219-46229https://doi.org/10.18632/oncotarget.10078
        • Jin U.-H.
        • Lee S.-O.
        • Pfent C.
        • Safe S.
        The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis.
        BMC Cancer. 2014; 14: 498https://doi.org/10.1186/1471-2407-14-498
        • Kim M.H.
        • Kang H.M.
        • Kim C.-E.
        • Han S.
        • Kim S.-W.
        Ramipril inhibits high glucose-stimulated up-regulation of adhesion molecules via the ERK1/2 MAPK signaling pathway in human umbilical vein endothelial cells.
        Cell Mol Biol Lett. 2015; 20: 937-947https://doi.org/10.1515/cmble-2015-0053
        • Koh S.-J.
        • Kim J.M.
        • Kim I.-K.
        • Kim N.
        • Jung H.C.
        • Song I.S.
        • et al.
        Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice.
        Am J Physiol Gastrointest Liver Physiol. 2011; 301: G9-19https://doi.org/10.1152/ajpgi.00267.2010
        • Koritzinsky M.
        Metformin: a novel biological modifier of tumor response to radiation therapy.
        Int J Radiat Oncol Biol Phys. 2015; 93: 454-464https://doi.org/10.1016/j.ijrobp.2015.06.003
        • Langrand-Escure J.
        • Vallard A.
        • Rivoirard R.
        • Méry B.
        • Guy J.-B.
        • Espenel S.
        • et al.
        Safety assessment of molecular targeted therapies in association with radiotherapy in metastatic renal cell carcinoma: a real-life report.
        Anticancer Drugs. 2016; 27 (10.1097/CAD.0000000000000349): 427-432
        • Levy A.
        • Chargari C.
        • Marabelle A.
        • Perfettini J.-L.
        • Magné N.
        • Deutsch E.
        Can immunostimulatory agents enhance the abscopal effect of radiotherapy?.
        Eur J Cancer. 2016; 62: 36-45https://doi.org/10.1016/j.ejca.2016.03.067
        • Li T.
        • Zhang Q.
        • Zhang J.
        • Yang G.
        • Shao Z.
        • Luo J.
        • et al.
        Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway.
        BMC Cancer. 2014; 14: 96https://doi.org/10.1186/1471-2407-14-96
        • Lu Y.
        • Lin Y.Z.
        • LaPushin R.
        • Cuevas B.
        • Fang X.
        • Yu S.X.
        • et al.
        The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells.
        Oncogene. 1999; 18: 7034-7045https://doi.org/10.1038/sj.onc.1203183
        • Magné N.
        • Chargari C.
        • Soria J.-C.
        • Deutsch E.
        Concomitant chemo-radiotherapy in clinical trials: to promote step by step rational development.
        Crit Rev Oncol Hematol. 2009; 70: 206-215https://doi.org/10.1016/j.critrevonc.2008.09.016
        • Maity G.
        • De A.
        • Das A.
        • Banerjee S.
        • Sarkar S.
        • Banerjee S.K.
        Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition.
        Lab Invest. 2015; 95: 702-717https://doi.org/10.1038/labinvest.2015.49
        • Moncharmont C.
        • Levy A.
        • Gilormini M.
        • Bertrand G.
        • Chargari C.
        • Alphonse G.
        • et al.
        Targeting a cornerstone of radiation resistance: cancer stem cell.
        Cancer Lett. 2012; 322: 139-147https://doi.org/10.1016/j.canlet.2012.03.024
        • Moon D.C.
        • Lee H.S.
        • Lee Y.I.
        • Chung M.J.
        • Park J.Y.
        • Park S.W.
        • et al.
        Concomitant statin use has a favorable effect on Gemcitabine-Erlotinib combination chemotherapy for advanced pancreatic cancer.
        Yonsei Med J. 2016; 57: 1124-1130https://doi.org/10.3349/ymj.2016.57.5.1124
        • Mu J.
        • Xu H.
        • Yang Y.
        • Huang W.
        • Xiao J.
        • Li M.
        • et al.
        Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer.
        Oncol Rep. 2014; 31: 2107-2114https://doi.org/10.3892/or.2014.3068
        • Numico G.
        • Fusco V.
        • Franco P.
        • Roila F.
        Proton Pump Inhibitors in cancer patients: How useful they are? A review of the most common indications for their use.
        Crit Rev Oncol Hematol. 2017; 111: 144-151https://doi.org/10.1016/j.critrevonc.2017.01.014
        • Oliveira K.A.
        • Dal-Cim T.
        • Lopes F.G.
        • Ludka F.K.
        • Nedel C.B.
        • Tasca C.I.
        Atorvastatin promotes cytotoxicity and reduces migration and proliferation of human A172 glioma cells.
        Mol Neurobiol. 2018; 55: 1509-1523https://doi.org/10.1007/s12035-017-0423-8
        • Palumbo I.
        • Matrone F.
        • Montesi G.
        • Bellavita R.
        • Lupattelli M.
        • Saldi S.
        • et al.
        Statins protect against acute RT-related rectal toxicity in patients with prostate cancer: an observational prospective study.
        Anticancer Res. 2017; 37: 1453-1457https://doi.org/10.21873/anticanres.11469
        • Pang Y.-Y.
        • Wang T.
        • Chen F.-Y.
        • Wu Y.-L.
        • Shao X.
        • Xiao F.
        • et al.
        Glycolytic inhibitor 2-deoxy-d-glucose suppresses cell proliferation and enhances methylprednisolone sensitivity in non-Hodgkin lymphoma cells through down-regulation of HIF-1α and c-MYC.
        Leuk Lymphoma. 2015; 56: 1821-1830https://doi.org/10.3109/10428194.2014.963575
        • Paramio J.M.
        • Navarro M.
        • Segrelles C.
        • Gómez-Casero E.
        • Jorcano J.L.
        PTEN tumour suppressor is linked to the cell cycle control through the retinoblastoma protein.
        Oncogene. 1999; 18: 7462-7468https://doi.org/10.1038/sj.onc.1203151
        • Piazuelo E.
        • Esquivias P.
        • De Martino A.
        • Cebrián C.
        • Conde B.
        • Santander S.
        • et al.
        Acetylsalicylic acid exhibits antitumor effects in esophageal adenocarcinoma cells in vitro and in vivo.
        Dig Dis Sci. 2016; 61: 2896-2907https://doi.org/10.1007/s10620-016-4225-z
        • Pulkoski-Gross A.
        • Li J.
        • Zheng C.
        • Li Y.
        • Ouyang N.
        • Rigas B.
        • et al.
        Repurposing the antipsychotic trifluoperazine as an antimetastasis agent.
        Mol Pharmacol. 2015; 87: 501-512https://doi.org/10.1124/mol.114.096941
        • Rentala S.
        • Chintala R.
        • Guda M.
        • Chintala M.
        • Komarraju A.L.
        • Mangamoori L.N.
        Atorvastatin inhibited Rho-associated kinase 1 (ROCK1) and focal adhesion kinase (FAK) mediated adhesion and differentiation of CD133 + CD44+ prostate cancer stem cells.
        Biochem Biophys Res Commun. 2013; 441: 586-592https://doi.org/10.1016/j.bbrc.2013.10.112
        • Rouhani M.
        • Goliaei B.
        • Khodagholi F.
        • Nikoofar A.
        Lithium increases radiosensitivity by abrogating DNA repair in breast cancer spheroid culture.
        Arch Iran Med. 2014; 17 (0141705/AIM.009): 352-360
        • Song C.W.
        • Lee H.
        • Dings R.P.M.
        • Williams B.
        • Powers J.
        • Santos T.D.
        • et al.
        Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells.
        Sci Rep. 2012; 2: 362https://doi.org/10.1038/srep00362
        • Song Z.
        • Wei B.
        • Lu C.
        • Huang X.
        • Li P.
        • Chen L.
        Metformin suppresses the expression of Sonic hedgehog in gastric cancer cells.
        Mol Med Rep. 2017; 15: 1909-1915https://doi.org/10.3892/mmr.2017.6205
        • Thariat J.
        • Kirova Y.
        • Milano G.
        • Mornex F.
        Combination of stereotactic irradiation and chemotherapy or targeted therapies: state of the art and preliminary recommendations.
        Cancer Radiother. 2014; 18: 270-279https://doi.org/10.1016/j.canrad.2014.05.007
        • Tsai S.-C.
        • Tsai M.-H.
        • Chiu C.-F.
        • Lu C.-C.
        • Kuo S.-C.
        • Chang N.-W.
        • et al.
        AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway.
        Environ Toxicol. 2016; 31: 866-876https://doi.org/10.1002/tox.22097
        • Wang T.
        • Seah S.
        • Loh X.
        • Chan C.-W.
        • Hartman M.
        • Goh B.-C.
        • et al.
        Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway.
        Oncotarget. 2016; 7: 2532-2544https://doi.org/10.18632/oncotarget.6304
        • Wedlake L.J.
        • Silia F.
        • Benton B.
        • Lalji A.
        • Thomas K.
        • Dearnaley D.P.
        • et al.
        Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies.
        Eur J Cancer. 2012; 48: 2117-2124https://doi.org/10.1016/j.ejca.2011.12.034
        • Wei J.
        • Xu H.
        • Liu Y.
        • Li B.
        • Zhou F.
        Effect of captopril on radiation-induced TGF-β1 secretion in EA.Hy926 human umbilical vein endothelial cells.
        Oncotarget. 2017; 8: 20842-20850https://doi.org/10.18632/oncotarget.15356
        • Wink K.C.J.
        • Belderbos J.S.A.
        • Dieleman E.M.T.
        • Rossi M.
        • Rasch C.R.N.
        • Damhuis R.A.M.
        • et al.
        Improved progression free survival for patients with diabetes and locally advanced non-small cell lung cancer (NSCLC) using metformin during concurrent chemoradiotherapy.
        Radiother Oncol. 2016; 118: 453-459https://doi.org/10.1016/j.radonc.2016.01.012
        • Xia M.
        • Tong J.-H.
        • Zhou Z.-Q.
        • Duan M.-L.
        • Xu J.-G.
        • Zeng H.-J.
        • et al.
        Tramadol inhibits proliferation, migration and invasion via α2-adrenoceptor signaling in breast cancer cells.
        Eur Rev Med Pharmacol Sci. 2016; 20: 157-165
        • Yoshiji H.
        • Kuriyama S.
        • Kawata M.
        • Yoshii J.
        • Ikenaka Y.
        • Noguchi R.
        • et al.
        The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor.
        Clin Cancer Res. 2001; 7: 1073-1078
        • Yu Q.-H.
        • Guo J.-F.
        • Chen Y.
        • Guo X.-R.
        • Du Y.-Q.
        • Li Z.-S.
        Captopril pretreatment protects the lung against severe acute pancreatitis induced injury via inhibiting angiotensin II production and suppressing Rho/ROCK pathway.
        Kaohsiung J Med Sci. 2016; 32: 439-445https://doi.org/10.1016/j.kjms.2016.07.008
        • Zhang D.
        • Ma Q.
        • Wang Z.
        • Zhang M.
        • Guo K.
        • Wang F.
        • et al.
        β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway.
        Mol Cancer. 2011; 10: 146https://doi.org/10.1186/1476-4598-10-146
        • Zhang D.
        • Ma Q.Y.
        • Hu H.-T.
        • Zhang M.
        β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NF-κB and AP-1.
        Cancer Biol Therapy. 2010; 10: 19-29https://doi.org/10.4161/cbt.10.1.11944