Advertisement

Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target

      Abstract

      Radiation therapy is used to treat cancer by radiation-induced DNA damage. Despite the best efforts to eliminate cancer, some cancer cells survive irradiation, resulting in cancer progression or recurrence. Alteration in DNA damage repair pathways is common in cancers, resulting in modulation of their response to radiation. This article focuses on the recent findings about molecules and pathways that potentially can be targeted to sensitize prostate cancer cells to ionizing radiation, thereby achieving an improved therapeutic outcome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J Clin. 2016; 66: 7-30
        • Miller K.D.
        • Siegel R.L.
        • Lin C.C.
        • Mariotto A.B.
        • Kramer J.L.
        • Rowland J.H.
        • et al.
        Cancer treatment and survivorship statistics, 2016.
        CA. 2016; 66: 271-289
        • Ferri F.F.A.
        Ferri’s clinical advisor 2017 e-book.
        Elsevier, Philadelphia, PA2017: 1052-1054
        • Sandler H.M.
        • Mirhadi A.J.
        Radical radiotherapy for prostate cancer is the'only way to go'.
        Oncology. 2009; 23: 840
        • Lomax M.
        • Folkes L.
        • O'Neill P.
        Biological consequences of radiation-induced DNA damage: relevance to radiotherapy.
        Clin Oncol. 2013; 25: 578-585
        • Raleigh D.R.
        • Haas-Kogan D.A.
        Molecular targets and mechanisms of radiosensitization using DNA damage response pathways.
        Future Oncol. 2013; 9: 219-233
        • Weichselbaum R.R.
        • Liang H.
        • Deng L.
        • Fu Y.-X.
        Radiotherapy and immunotherapy: a beneficial liaison?.
        Nat Rev Clin Oncol. 2017;
        • Barker H.E.
        • Paget J.T.
        • Khan A.A.
        • Harrington K.J.
        The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.
        Nat Rev Cancer. 2015; 15: 409-425
        • Smyth M.J.
        • Ngiow S.F.
        • Ribas A.
        • Teng M.W.
        Combination cancer immunotherapies tailored to the tumour microenvironment.
        Nat Rev Clin Oncol. 2016; 13: 143-158
        • Lee J.-H.
        • Paull T.T.
        Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex.
        Science. 2004; 304: 93-96
        • Fan Z.
        • Chakravarty P.
        • Alfieri A.
        • Pandita T.K.
        • Vikram B.
        • Guha C.
        Adenovirus-mediated antisense ATM gene transfer sensitizes prostate cancer cells to radiation.
        Cancer Gene Ther. 2000; 7: 1307-1314
        • Bosch-Barrera J.
        • Menendez J.A.
        Silibinin and STAT3: A natural way of targeting transcription factors for cancer therapy.
        Cancer Treat Rev. 2015; 41: 540-546
        • Nambiar D.K.
        • Rajamani P.
        • Deep G.
        • Jain A.K.
        • Agarwal R.
        • Singh R.P.
        Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling.
        Mol Cancer Ther. 2015; 14: 2722-2734
        • Noel G.
        • Godon C.
        • Fernet M.
        • Giocanti N.
        • Megnin-Chanet F.
        • Favaudon V.
        Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis.
        Mol Cancer Ther. 2006; 5: 564-574
        • Bryant H.E.
        • Schultz N.
        • Thomas H.D.
        • Parker K.M.
        • Flower D.
        • Lopez E.
        • et al.
        Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.
        Nature. 2005; 434: 913-917
        • Lord C.J.
        • Tutt A.N.
        • Ashworth A.
        Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors.
        Annu Rev Med. 2015; 66: 455-470
        • Gottipati P.
        • Vischioni B.
        • Schultz N.
        • Solomons J.
        • Bryant H.E.
        • Djureinovic T.
        • et al.
        Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells.
        Cancer Res. 2010; 70: 5389-5398
        • Leongamornlert D.
        • Mahmud N.
        • Tymrakiewicz M.
        • Saunders E.
        • Dadaev T.
        • Castro E.
        • et al.
        Germline BRCA1 mutations increase prostate cancer risk.
        Br J Cancer. 2012; 106: 1697-1701
        • Kote-Jarai Z.
        • Leongamornlert D.
        • Saunders E.
        • Tymrakiewicz M.
        • Castro E.
        • Mahmud N.
        • et al.
        BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients.
        Br J Cancer. 2011; 105: 1230-1234
        • Mateo J.
        • Carreira S.
        • Sandhu S.
        • Miranda S.
        • Mossop H.
        • Perez-Lopez R.
        • et al.
        DNA-repair defects and olaparib in metastatic prostate cancer.
        N Engl J Med. 2015; 373: 1697-1708
        • Chiruvella K.K.
        • Liang Z.
        • Wilson T.E.
        Repair of double-strand breaks by end joining.
        Cold Spring Harb Perspect Biol. 2013; 5: a012757
        • Wang M.
        • Wu W.
        • Wu W.
        • Rosidi B.
        • Zhang L.
        • Wang H.
        • et al.
        PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways.
        Nucleic Acids Res. 2006; 34: 6170-6182
        • Loser D.A.
        • Shibata A.
        • Shibata A.K.
        • Woodbine L.J.
        • Jeggo P.A.
        • Chalmers A.J.
        Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.
        Mol Cancer Ther. 2010; 9: 1775-1787
        • Kotter A.
        • Cornils K.
        • Borgmann K.
        • Dahm-Daphi J.
        • Petersen C.
        • Dikomey E.
        • et al.
        Inhibition of PARP1-dependent end-joining contributes to Olaparib-mediated radiosensitization in tumor cells.
        Mol Oncol. 2014; 8: 1616-1625
        • Tomlins S.A.
        • Mehra R.
        • Rhodes D.R.
        • Smith L.R.
        • Roulston D.
        • Helgeson B.E.
        • et al.
        TMPRSS2: ETV4 gene fusions define a third molecular subtype of prostate cancer.
        Cancer Res. 2006; 66: 3396-3400
        • Tomlins S.A.
        • Rhodes D.R.
        • Perner S.
        • Dhanasekaran S.M.
        • Mehra R.
        • Sun X.-W.
        • et al.
        Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.
        Science. 2005; 310: 644-648
        • Milosevic M.
        • Warde P.
        • Menard C.
        • Chung P.
        • Toi A.
        • Ishkanian A.
        • et al.
        Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer.
        Clin Cancer Res. 2012; 18: 2108-2114
        • Gani C.
        • Coackley C.
        • Kumareswaran R.
        • Schutze C.
        • Krause M.
        • Zafarana G.
        • et al.
        In vivo studies of the PARP inhibitor, AZD-2281, in combination with fractionated radiotherapy: An exploration of the therapeutic ratio.
        Radiother Oncol. 2015; 116: 486-494
        • Spratt D.E.
        • Evans M.J.
        • Davis B.J.
        • Doran M.G.
        • Lee M.X.
        • Shah N.
        • et al.
        Androgen receptor upregulation mediates radioresistance after ionizing radiation.
        Cancer Res. 2015; 75: 4688-4696
        • Shipley W.U.
        • Seiferheld W.
        • Lukka H.R.
        • Major P.P.
        • Heney N.M.
        • Grignon D.J.
        • et al.
        Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer.
        N Engl J Med. 2017; 376: 417-428
        • Polkinghorn W.R.
        • Parker J.S.
        • Lee M.X.
        • Kass E.M.
        • Spratt D.E.
        • Iaquinta P.J.
        • et al.
        Androgen receptor signaling regulates DNA repair in prostate cancers.
        Cancer Discov. 2013; 3: 1245-1253
        • Goodwin J.F.
        • Schiewer M.J.
        • Dean J.L.
        • Schrecengost R.S.
        • de Leeuw R.
        • Han S.
        • et al.
        A hormone-DNA repair circuit governs the response to genotoxic insult.
        Cancer Discov. 2013; 3: 1254-1271
        • Al-Ubaidi F.L.
        • Schultz N.
        • Loseva O.
        • Egevad L.
        • Granfors T.
        • Helleday T.
        Castration therapy results in decreased Ku70 levels in prostate cancer.
        Clin Cancer Res. 2013; 19: 1547-1556
        • Tarish F.L.
        • Schultz N.
        • Tanoglidi A.
        • Hamberg H.
        • Letocha H.
        • Karaszi K.
        • et al.
        Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair.
        Sci Transl Med. 2015; 7: 312re11
        • Yin Y.
        • Li R.
        • Xu K.
        • Ding S.
        • Li J.
        • Baek G.
        • et al.
        Androgen receptor variants mediate DNA repair after prostate cancer irradiation.
        Cancer Res. 2017; 77: 4745-4754
        • Haffner M.C.
        • Aryee M.J.
        • Toubaji A.
        • Esopi D.M.
        • Albadine R.
        • Gurel B.
        • et al.
        Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements.
        Nat Genet. 2010; 42: 668-675
        • Hedayati M.
        • Haffner M.C.
        • Coulter J.B.
        • Raval R.R.
        • Zhang Y.
        • Zhou H.
        • et al.
        Androgen deprivation followed by acute androgen stimulation selectively sensitizes AR-positive prostate cancer cells to ionizing radiation.
        Clin Cancer Res. 2016; 22: 3310-3319
        • Bartek J.
        • Mistrik M.
        • Bartkova J.
        Androgen receptor signaling fuels DNA repair and radioresistance in prostate cancer.
        Cancer Discov. 2013; 3: 1222-1224
        • Cho S.H.
        • Toouli C.D.
        • Fujii G.H.
        • Crain C.
        • Parry D.
        Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
        Cell Cycle. 2005; 4: 131-139
        • Liu Q.
        • Guntuku S.
        • Cui X.-S.
        • Matsuoka S.
        • Cortez D.
        • Tamai K.
        • et al.
        Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint.
        Genes Dev. 2000; 14: 1448-1459
        • Massey A.J.
        Tumour growth environment modulates Chk1 signalling pathways and Chk1 inhibitor sensitivity.
        Sci Rep. 2016; : 6
        • Z-r Zhou
        • Z-z Yang
        • S-j Wang
        • Zhang L.
        • J-r Luo
        • Feng Y.
        • et al.
        The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy.
        Acta Pharmacol Sin. 2017;
        • Jackson J.R.
        • Gilmartin A.
        • Imburgia C.
        • Winkler J.D.
        • Marshall L.A.
        • Roshak A.
        An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage.
        Cancer Res. 2000; 60: 566-572
        • Wu J.
        • Lai G.
        • Wan F.
        • Xiao Z.
        • Zeng L.
        • Wang X.
        • et al.
        Knockdown of checkpoint kinase 1 is associated with the increased radiosensitivity of glioblastoma stem-like cells.
        Tohoku J Experiment Med. 2012; 226: 267-274
        • Fokas E.
        • Prevo R.
        • Pollard J.
        • Reaper P.
        • Charlton P.
        • Cornelissen B.
        • et al.
        Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation.
        Cell Death Disease. 2012; 3: e441
        • Alsubhi N.
        • Middleton F.
        • Abdel-Fatah T.M.
        • Stephens P.
        • Doherty R.
        • Arora A.
        • et al.
        Chk1 phosphorylated at serine 345 is a predictor of early local recurrence and radio-resistance in breast cancer.
        Mol Oncol. 2016; 10: 213-223
        • Wang X.
        • Ma Z.
        • Xiao Z.
        • Liu H.
        • Dou Z.
        • Feng X.
        • et al.
        Chk1 knockdown confers radiosensitization in prostate cancer stem cells.
        Oncol Rep. 2012; 28: 2247-2254
        • Otto T.
        • Sicinski P.
        Cell cycle proteins as promising targets in cancer therapy.
        Nat Rev Cancer. 2017; 17: 93-115
        • Carlson B.A.
        • Dubay M.M.
        • Sausville E.A.
        • Brizuela L.
        • Worland P.J.
        Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells.
        Cancer Res. 1996; 56: 2973-2978
        • Cimini A.
        • d'Angelo M.
        • Benedetti E.
        • D'Angelo B.
        • Laurenti G.
        • Antonosante A.
        • et al.
        Flavopiridol: an old drug with new perspectives? Implication for development of new drugs.
        J Cell Physiol. 2017; 232: 312-322
        • Losiewicz M.D.
        • Carlson B.A.
        • Kaur G.
        • Sausville E.A.
        • Worland P.J.
        Potent inhibition of CDC2 kinase activity by the flavonoid L86–8275.
        Biochem Biophys Res Commun. 1994; 201: 589-595
        • Kaur G.
        • Stetler-Stevenson M.
        • Sebers S.
        • Worland P.
        • Sedlacek H.
        • Myers C.
        • et al.
        Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86–8275.
        J Natl Cancer Inst. 1992; 84: 1736-1740
        • Arguello F.
        • Alexander M.
        • Sterry J.A.
        • Tudor G.
        • Smith E.M.
        • Kalavar N.T.
        • et al.
        Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts.
        Blood. 1998; 91: 2482-2490
        • Sedlacek H.H.
        • Czech J.
        • Naik R.
        • Kaur G.
        • Worland P.
        • Losiewicz M.
        • et al.
        Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy.
        Int J Oncol. 1996; 9: 1143-1168
        • Drees M.
        • Dengler W.A.
        • Roth T.
        • Labonte H.
        • Mayo J.
        • Malspeis L.
        • et al.
        Flavopiridol (L86–8275): selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells.
        Clin Cancer Res. 1997; 3: 273-279
        • Gomez L.A.
        • de las Pozas A.
        • Perez-Stable C.
        Sequential combination of flavopiridol and docetaxel reduces the levels of X-linked inhibitor of apoptosis and AKT proteins and stimulates apoptosis in human LNCaP prostate cancer cells.
        Mol Cancer Therap. 2006; 5: 1216-1226
        • Liu G.
        • Gandara D.R.
        • Lara P.N.
        • Raghavan D.
        • Doroshow J.H.
        • Twardowski P.
        • et al.
        A Phase II trial of flavopiridol (NSC# 649890) in patients with previously untreated metastatic androgen-independent prostate cancer.
        Clinical Cancer Res. 2004; 10: 924-928
        • Reiner T.
        • De Las Pozas A.
        • Perez-Stable C.
        Sequential combinations of flavopiridol and docetaxel inhibit prostate tumors, induce apoptosis, and decrease angiogenesis in the Gγ/T-15 transgenic mouse model of prostate cancer.
        Prostate. 2006; 66: 1487-1497
        • Soner B.C.
        • Aktug H.
        • Acikgoz E.
        • Duzagac F.
        • Guven U.
        • Ayla S.
        • et al.
        Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol.
        Int J Mol Med. 2014; 34: 1249-1256
        • Yiweili S.
        • Chinni A.M.
        • Fazlul H.
        Induction of growth inhibition and apoptosis in prostate cancer cells by flavopiridol.
        Int J Oncol. 2000; 17: 755-759
        • Zalazar F.
        • De Luca P.
        • Gardner K.
        • Figg W.D.
        • Meiss R.
        • Spallanzani R.G.
        • et al.
        Low doses of CPS49 and flavopiridol combination as potential treatment for advanced prostate cancer.
        Curr Pharm Biotechnol. 2015; 16: 553-563
        • Camphausen K.
        • Brady K.J.
        • Burgan W.E.
        • Cerra M.A.
        • Russell J.S.
        • Bull E.E.
        • et al.
        Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of γH2AX foci.
        Mol Cancer Therap. 2004; 3: 409-416
        • Musgrove E.A.
        • Caldon C.E.
        • Barraclough J.
        • Stone A.
        • Sutherland R.L.
        Cyclin D as a therapeutic target in cancer.
        Nat Rev Cancer. 2011; 11: 558-572
        • Baldin V.
        • Lukas J.
        • Marcote M.
        • Pagano M.
        • Draetta G.
        Cyclin D1 is a nuclear protein required for cell cycle progression in G1.
        Genes Dev. 1993; 7: 812-821
        • Musgrove E.A.
        Cyclins: roles in mitogenic signaling and oncogenic transformation: mini review.
        Growth Factors. 2006; 24: 13-19
        • Lammie G.
        • Fantl V.
        • Smith R.
        • Schuuring E.
        • Brookes S.
        • Michalides R.
        • et al.
        D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1.
        Oncogene. 1991; 6: 439-444
        • Reissmann P.T.
        • Koga H.
        • Figlin R.A.
        • Holmes E.C.
        • Slamon D.J.
        Amplification and overexpression of the cyclin D1 and epidermal growth factor receptor genes in non-small-cell lung cancer.
        J Cancer Res Clin Oncol. 1999; 125: 61-70
        • Rodrigo J.P.
        • García L.A.
        • Ramos S.
        • Lazo P.S.
        • Suárez C.
        EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck.
        Clin Cancer Res. 2000; 6: 3177-3182
        • Cheung T.H.
        • Yu M.M.Y.
        • Lo K.W.K.
        • Yim S.F.
        • Chung T.K.H.
        • Wong Y.F.
        Alteration of cyclin D1 and CDK4 gene in carcinoma of uterine cervix.
        Cancer Lett. 2001; 166: 199-206
        • Fujii M.
        • Ishiguro R.
        • Yamashita T.
        • Tashiro M.
        Cyclin D1 amplification correlates with early recurrence of squamous cell carcinoma of the tongue.
        Cancer Lett. 2001; 172: 187-192
        • Vielba R.
        • Bilbao J.
        • Ispizua A.
        • Zabalza I.
        • Alfaro J.
        • Rezola R.
        • et al.
        p53 and cyclin D1 as prognostic factors in squamous cell carcinoma of the larynx.
        Laryngoscope. 2003; 113: 167-172
        • Lebe B.
        • Saǧol Ö.
        • Ulukuş Ç.
        • Çoker A.
        • Karademir S.
        • Astarcιoglu H.
        • et al.
        The importance of cyclin D1 and Ki67 expression on the biological behavior of pancreatic adenocarcinomas.
        Pathol-Res Pract. 2004; 200: 389-396
        • Fleischmann A.
        • Rocha C.
        • Saxer-Sekulic N.
        • Zlobec I.
        • Sauter G.
        • Thalmann G.N.
        High-level cytoplasmic cyclin D1 expression in lymph node metastases from prostate cancer independently predicts early biochemical failure and death in surgically treated patients.
        Histopathology. 2011; 58: 781-789
        • Kolar Z.
        • Murray P.
        • Scott K.
        • Harrison A.
        Relation of Bcl-2 expression to androgen receptor, p21WAF1/CIP1, and cyclin D1 status in prostate cancer.
        J Clin Pathol. 2000; 53: 15
        • Drobnjak M.
        • Osman I.
        • Scher H.I.
        • Fazzari M.
        • Cordon-Cardo C.
        Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone.
        Clin Cancer Res. 2000; 6: 1891-1895
        • Chen Y.
        • Martinez L.A.
        • LaCava M.
        • Coghlan L.
        • Conti C.J.
        Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1.
        Oncogene. 1998; 16: 1913-1920
        • Li Z.
        • Jiao X.
        • Wang C.
        • Shirley L.A.
        • Elsaleh H.
        • Dahl O.
        • et al.
        Alternative cyclin D1 splice forms differentially regulate the DNA damage response.
        Cancer Res. 2010; 70: 8802-8811
        • Wang C.
        • Fan S.
        • Li Z.
        • Fu M.
        • Rao M.
        • Ma Y.
        • et al.
        Cyclin D1 antagonizes BRCA1 repression of estrogen receptor α activity.
        Cancer Res. 2005; 65: 6557-6567
        • Xiong Y.
        • Zhang H.
        • Beach D.
        D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA.
        Cell. 1992; 71: 505-514
        • Jirawatnotai S.
        • Hu Y.
        • Livingston D.M.
        • Sicinski P.
        Proteomic identification of a direct role for cyclin d1 in DNA damage repair.
        Cancer Res. 2012; 72: 4289-4293
        • Jirawatnotai S.
        • Hu Y.
        • Michowski W.
        • Elias J.E.
        • Becks L.
        • Bienvenu F.
        • et al.
        A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers.
        Nature. 2011; 474: 230-234
        • Li Z.
        • Chen K.
        • Jiao X.
        • Wang C.
        • Willmarth N.E.
        • Casimiro M.C.
        • et al.
        Cyclin D1 integrates estrogen-mediated DNA damage repair signaling.
        Cancer Res. 2014; 74: 3959-3970
        • Marampon F.
        • Gravina G.
        • Ju X.
        • Vetuschi A.
        • Sferra R.
        • Casimiro M.C.
        • et al.
        Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage.
        Oncotarget. 2016; 7: 5383
        • Niermann K.J.
        • Moretti L.
        • Giacalone N.J.
        • Sun Y.
        • Schleicher S.M.
        • Kopsombut P.
        • et al.
        Enhanced radiosensitivity of androgen-resistant prostate cancer: AZD1152-mediated Aurora kinase B inhibition.
        Radiat Res. 2011; 175: 444-451
        • Andrews P.D.
        • Knatko E.
        • Moore W.J.
        • Swedlow J.R.
        Mitotic mechanics: the auroras come into view.
        Curr Opin Cell Biol. 2003; 15: 672-683
        • Wike C.L.
        • Graves H.K.
        • Hawkins R.
        • Gibson M.D.
        • Ferdinand M.B.
        • Zhang T.
        • et al.
        Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis.
        eLife. 2016; 5: e11402
        • Reichert Z.R.
        • Wahl D.R.
        • Morgan M.A.
        Translation of targeted radiation sensitizers into clinical trials.
        Semin Radiat Oncol. 2016; 26: 261-270
        • Wang Y.
        • Sun H.
        • Wang Z.
        • Liu M.
        • Qi Z.
        • Meng J.
        • et al.
        Aurora-A: a potential DNA repair modulator.
        Tumour Biol. 2014; 35: 2831-2836
        • Hong X.
        • O'Donnell J.P.
        • Salazar C.R.
        • Van Brocklyn J.R.
        • Barnett K.D.
        • Pearl D.K.
        • et al.
        The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation.
        Cancer Chemother Pharmacol. 2014; 73: 983-990
        • Venkataraman S.
        • Alimova I.
        • Tello T.
        • Harris P.S.
        • Knipstein J.A.
        • Donson A.M.
        • et al.
        Targeting Aurora Kinase A enhances radiation sensitivity of atypical teratoid rhabdoid tumor cells.
        J Neuro-oncol. 2012; 107: 517-526
        • Altieri D.C.
        Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm.
        J Cell Biochem. 2004; 92: 656-663
        • Carmena M.
        • Earnshaw W.C.
        The cellular geography of aurora kinases.
        Nat Rev Mol Cell Biol. 2003; 4: 842-854
        • Adams R.R.
        • Maiato H.
        • Earnshaw W.C.
        • Carmena M.
        Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation.
        J Cell Biol. 2001; 153: 865-880
        • Hauf S.
        • Cole R.W.
        • LaTerra S.
        • Zimmer C.
        • Schnapp G.
        • Walter R.
        • et al.
        The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint.
        J Cell Biol. 2003; 161: 281-294
        • Tao Y.
        • Zhang P.
        • Girdler F.
        • Frascogna V.
        • Castedo M.
        • Bourhis J.
        • et al.
        Enhancement of radiation response in p53-deficient cancer cells by the Aurora-B kinase inhibitor AZD1152.
        Oncogene. 2008; 27: 3244-3255
        • Walsby E.
        • Walsh V.
        • Pepper C.
        • Burnett A.
        • Mills K.
        Effects of the aurora kinase inhibitors AZD1152-HQPA and ZM447439 on growth arrest and polyploidy in acute myeloid leukemia cell lines and primary blasts.
        Haematologica. 2008; 93: 662-669
        • Li J.
        • Anderson M.G.
        • Tucker L.A.
        • Shen Y.
        • Glaser K.B.
        • Shah O.J.
        Inhibition of Aurora B kinase sensitizes a subset of human glioma cells to TRAIL concomitant with induction of TRAIL-R2.
        Cell Death Differ. 2009; 16: 498-511
        • Yang J.
        • Ikezoe T.
        • Nishioka C.
        • Tasaka T.
        • Taniguchi A.
        • Kuwayama Y.
        • et al.
        AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo.
        Blood. 2007; 110: 2034-2040
        • Bhardwaj V.
        • Cascone T.
        • Cortez M.A.
        • Amini A.
        • Evans J.
        • Komaki R.U.
        • et al.
        Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy.
        Cancer. 2013; 119: 1768-1775
        • Birchmeier C.
        • Birchmeier W.
        • Gherardi E.
        • Vande Woude G.F.
        Met, metastasis, motility and more.
        Nat Rev Mol Cell Biol. 2003; 4: 915-925
        • Li Y.
        • Wang J.
        • Gao X.
        • Han W.
        • Zheng Y.
        • Xu H.
        • et al.
        c-Met targeting enhances the effect of irradiation and chemical agents against malignant colon cells harboring a KRAS mutation.
        PLoS One. 2014; 9: e113186
        • Sipeki S.
        • Bander E.
        • Buday L.
        • Farkas G.
        • Bacsy E.
        • Ways D.K.
        • et al.
        Phosphatidylinositol 3-kinase contributes to Erk1/Erk2 MAP kinase activation associated with hepatocyte growth factor-induced cell scattering.
        Cell Signal. 1999; 11: 885-890
        • Maroun C.R.
        • Naujokas M.A.
        • Holgado-Madruga M.
        • Wong A.J.
        • Park M.
        The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase.
        Mol Cell Biol. 2000; 20: 8513-8525
        • Dai Y.
        • Liu M.
        • Tang W.
        • DeSano J.
        • Burstein E.
        • Davis M.
        • et al.
        Molecularly Targeted Radiosensitization of Human Prostate Cancer by Modulating Inhibitor of Apoptosis.
        Clin Cancer Res. 2008; 14: 7701-7710
        • Fan S.
        • Wang J.A.
        • Yuan R.Q.
        • Rockwell S.
        • Andres J.
        • Zlatapolskiy A.
        • et al.
        Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents.
        Oncogene. 1998; 17: 131-141
        • Medova M.
        • Aebersold D.M.
        • Zimmer Y.
        MET inhibition in tumor cells by PHA665752 impairs homologous recombination repair of DNA double strand breaks.
        Int J Cancer. 2012; 130: 728-734
        • Yu H.
        • Li X.
        • Sun S.
        • Gao X.
        • Zhou D.
        c-Met inhibitor SU11274 enhances the response of the prostate cancer cell line DU145 to ionizing radiation.
        Biochem Biophys Res Commun. 2012; 427: 659-665
        • Polak P.
        • Hall M.N.
        mTOR and the control of whole body metabolism.
        Curr Opin Cell Biol. 2009; 21: 209-218
        • Dowling R.J.
        • Topisirovic I.
        • Fonseca B.D.
        • Sonenberg N.
        Dissecting the role of mTOR: lessons from mTOR inhibitors.
        Biochim Biophys Acta (BBA)-Proteins Proteom. 2010; 1804: 433-439
        • Hay N.
        • Sonenberg N.
        Upstream and downstream of mTOR.
        Genes Dev. 2004; 18: 1926-1945
        • García-Martínez J.M.
        • Alessi D.R.
        mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1).
        Biochem J. 2008; 416: 375-385
        • Guertin D.A.
        • Sabatini D.M.
        Defining the role of mTOR in cancer.
        Cancer Cell. 2007; 12: 9-22
        • Sarbassov D.D.
        • Ali S.M.
        • Kim D.-H.
        • Guertin D.A.
        • Latek R.R.
        • Erdjument-Bromage H.
        • et al.
        Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton.
        Curr Biol. 2004; 14: 1296-1302
        • Chang L.
        • Graham P.
        • Hao J.
        • Ni J.
        • Bucci J.
        • Cozzi P.
        • et al.
        Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance.
        Cell Death Dis. 2013; 4: e875
        • Ni J.
        • Cozzi P.
        • Hao J.
        • Beretov J.
        • Chang L.
        • Duan W.
        • et al.
        Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway.
        Int J Biochem Cell Biol. 2013; 45: 2736-2748
        • Xue Q.
        • Hopkins B.
        • Perruzzi C.
        • Udayakumar D.
        • Sherris D.
        • Benjamin L.E.
        Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability.
        Cancer Res. 2008; 68: 9551-9557
        • Gravina G.L.
        • Marampon F.
        • Sherris D.
        • Vittorini F.
        • Cesare E.D.
        • Tombolini V.
        • et al.
        Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1-mediated survivin function and delaying DNA repair in prostate cancer models.
        Prostate. 2014; 74: 852-868
        • Chang L.
        • Graham P.
        • Hao J.
        • Ni J.
        • Bucci J.
        • Cozzi P.
        • et al.
        PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways.
        Cell Death Disease. 2014; 5: e1437
        • Potiron V.A.
        • Abderrahmani R.
        • Giang E.
        • Chiavassa S.
        • Di Tomaso E.
        • Maira S.M.
        • et al.
        Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions.
        Radiother Oncol. 2013; 106: 138-146
        • Zhu W.
        • Fu W.
        • Hu L.
        NVP-BEZ235, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, prominently enhances radiosensitivity of prostate cancer cell line PC-3.
        Cancer Biother Radiopharm. 2013; 28: 665-673
        • Huamani J.
        • Willey C.
        • Thotala D.
        • Niermann K.J.
        • Reyzer M.
        • Leavitt L.
        • et al.
        Differential efficacy of combined therapy with radiation and AEE788 in high and low EGFR-expressing androgen-independent prostate tumor models.
        Int J Radiat Oncol Biol Phys. 2008; 71: 237-246
        • Grant S.
        Cotargeting survival signaling pathways in cancer.
        J Clin Invest. 2008; 118: 3003-3006
        • Gonnissen A.
        • Isebaert S.
        • Haustermans K.
        Hedgehog signaling in prostate cancer and its therapeutic implication.
        Int J Mol Sci. 2013; 14: 13979-14007
        • Karhadkar S.S.
        • Steven Bova G.
        • Abdallah N.
        • Dhara S.
        • Gardner D.
        • Maitra A.
        • et al.
        Hedgehog signalling in prostate regeneration, neoplasia and metastasis.
        Nature. 2004; 431: 707-712
        • Katoh Y.
        • Katoh M.
        Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.
        Curr Mol Med. 2009; 9: 873-886
        • Gonnissen A.
        • Isebaert S.
        • McKee C.
        • Haustermans K.
        • Muschel M.
        The hedgehog inhibitor GANT61 sensitizes prostate cancer cells to ionizing radiation both in vitro and in vivo.
        Oncotarget. 2016;
        • Vaupel P.
        • Thews O.
        • Hoeckel M.
        Treatment resistance of solid tumors: role of hypoxia and anemia.
        Med Oncol. 2001; 18: 243-259
        • Hennessey D.
        • Martin L.M.
        • Atzberger A.
        • Lynch T.H.
        • Hollywood D.
        • Marignol L.
        Exposure to hypoxia following irradiation increases radioresistance in prostate cancer cells.
        Urol Oncol. 2013; 31: 1106-1116
        • Iwai K.
        • Yamanaka K.
        • Kamura T.
        • Minato N.
        • Conaway R.C.
        • Conaway J.W.
        • et al.
        Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex.
        Proc Natl Acad Sci USA. 1999; 96: 12436-12441
        • Epstein A.C.
        • Gleadle J.M.
        • McNeill L.A.
        • Hewitson K.S.
        • O'Rourke J.
        • Mole D.R.
        • et al.
        C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation.
        Cell. 2001; 107: 43-54
        • Jeong J.W.
        • Bae M.K.
        • Ahn M.Y.
        • Kim S.H.
        • Sohn T.K.
        • Bae M.H.
        • et al.
        Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation.
        Cell. 2002; 111: 709-720
        • Singh-Gupta V.
        • Zhang H.
        • Banerjee S.
        • Kong D.
        • Raffoul J.J.
        • Sarkar F.H.
        • et al.
        Radiation-Induced HIF-1α Cell Survival Pathway is Inhibited by Soy Isoflavones in Prostate Cancer Cells.
        Int J Cancer J Int du Cancer. 2009; 124: 1675-1684
        • Spehalski E.I.
        • Tofilon P.J.
        • Camphausen K.
        Histone deacetylase inhibitors and tumor radiosensitization.
        in: Tofilon P.J. Camphausen K. Increasing the therapeutic ratio of radiotherapy. Springer International Publishing, Cham2017: 57-78
        • Robert C.
        • Nagaria P.K.
        • Pawar N.
        • Adewuyi A.
        • Gojo I.
        • Meyers D.J.
        • et al.
        Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.
        Leukemia Res. 2016; 45: 14-23
        • Glozak M.A.
        • Seto E.
        Histone deacetylases and cancer.
        Oncogene. 2007; 26: 5420-5432
        • Robert C.
        • Rassool F.V.
        HDAC inhibitors: roles of DNA damage and repair.
        Adv Cancer Res. 2012; 116: 87-129
        • Chen C.-S.
        • Wang Y.-C.
        • Yang H.-C.
        • Huang P.-H.
        • Kulp S.K.
        • Yang C.-C.
        • et al.
        Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation.
        Cancer Res. 2007; 67: 5318-5327
        • Camphausen K.
        • Tofilon P.J.
        Inhibition of histone deacetylation: a strategy for tumor radiosensitization.
        J Clin Oncol. 2007; 25: 4051-4056
        • Bolden J.E.
        • Peart M.J.
        • Johnstone R.W.
        Anticancer activities of histone deacetylase inhibitors.
        Nat Rev Drug Discov. 2006; 5: 769-784
        • Camphausen K.
        • Burgan W.
        • Cerra M.
        • Oswald K.A.
        • Trepel J.B.
        • Lee M.J.
        • et al.
        Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275.
        Cancer Res. 2004; 64: 316-321
        • Blagosklonny M.V.
        • Robey R.
        • Sackett D.L.
        • Du L.
        • Traganos F.
        • Darzynkiewicz Z.
        • et al.
        Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity.
        Mol Cancer Ther. 2002; 1: 937-941
        • Kgatle M.M.
        • Kalla A.A.
        • Islam M.M.
        • Sathekge M.
        • Moorad R.
        Prostate cancer: epigenetic alterations, risk factors, and therapy.
        Prostate Cancer. 2016; 2016: 5653862
        • Kim H.J.
        • Kim J.H.
        • Chie E.K.
        • Young P.D.
        • Kim I.A.
        • Kim I.H.
        DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity.
        Radiat Oncol. 2012; 7: 39
        • Antwih D.A.
        • Gabbara K.M.
        • Lancaster W.D.
        • Ruden D.M.
        • Zielske S.P.
        Radiation-induced epigenetic DNA methylation modification of radiation-response pathways.
        Epigenetics. 2013; 8: 839-848
        • Kumar A.
        • Rai P.S.
        • Upadhya R.
        • Vishwanatha Prasada K.S.
        • Rao B.S.
        • et al.
        gamma-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.
        Int J Radiat Biol. 2011; 87: 1086-1096
        • Hanoun N.
        • Delpu Y.
        • Suriawinata A.A.
        • Bournet B.
        • Bureau C.
        • Selves J.
        • et al.
        The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis.
        Clin Chem. 2010; 56: 1107-1118
        • Ji W.
        • Yang L.
        • Yuan J.
        • Yang L.
        • Zhang M.
        • Qi D.
        • et al.
        MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism.
        Carcinogenesis. 2013; 34: 446-453
        • Xue G.
        • Ren Z.
        • Chen Y.
        • Zhu J.
        • Du Y.
        • Pan D.
        • et al.
        A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation.
        Cancer Lett. 2015; 361: 121-127
        • Kamitani T.
        • Kito K.
        • Nguyen H.P.
        • Yeh E.T.
        Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein.
        J Biol Chem. 1997; 272: 28557-28562
        • Kumar S.
        • Tomooka Y.
        • Noda M.
        Identification of a set of genes with developmentally down-regulated expression in the mouse brain.
        Biochem Biophys Res Commun. 1992; 185: 1155-1161
        • Enchev R.I.
        • Schulman B.A.
        • Peter M.
        Protein neddylation: beyond cullin-RING ligases.
        Nat Rev Mol Cell Biol. 2015; 16: 30-44
        • Pan Z.-Q.
        • Kentsis A.
        • Dias D.C.
        • Yamoah K.
        • Wu K.
        Nedd8 on cullin: building an expressway to protein destruction.
        Oncogene. 2004; 23: 1985-1997
        • Soucy T.A.
        • Smith P.G.
        • Milhollen M.A.
        • Berger A.J.
        • Gavin J.M.
        • Adhikari S.
        • et al.
        An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer.
        Nature. 2009; 458: 732-736
        • Brownell J.E.
        • Sintchak M.D.
        • Gavin J.M.
        • Liao H.
        • Bruzzese F.J.
        • Bump N.J.
        • et al.
        Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ.
        Molecular Cell. 2010; 37: 102-111
        • Bosu D.R.
        • Kipreos E.T.
        Cullin-RING ubiquitin ligases: global regulation and activation cycles.
        Cell Div. 2008; 3: 7
        • Bhatia S.
        • Pavlick A.C.
        • Boasberg P.
        • Thompson J.A.
        • Mulligan G.
        • Pickard M.D.
        • et al.
        A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma.
        Invest New Drugs. 2016; 34: 439-449
        • Sarantopoulos J.
        • Shapiro G.I.
        • Cohen R.B.
        • Clark J.W.
        • Kauh J.S.
        • Weiss G.J.
        • et al.
        Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors.
        Clin Cancer Res. 2016; 22: 847-857
        • Shah J.J.
        • Jakubowiak A.J.
        • O'Connor O.A.
        • Orlowski R.Z.
        • Harvey R.D.
        • Smith M.R.
        • et al.
        Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma.
        Clin Cancer Res. 2016; 22: 34-43
        • Jia L.
        • Li H.
        • Sun Y.
        Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression.
        Neoplasia. 2011; 13: 561-569
        • Lin H.-K.
        • Chen Z.
        • Wang G.
        • Nardella C.
        • Lee S.-W.
        • Chan C.-H.
        • et al.
        Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence.
        Nature. 2010; 464: 374-379
        • Lin J.J.
        • Milhollen M.A.
        • Smith P.G.
        • Narayanan U.
        • Dutta A.
        NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells.
        Cancer Res. 2010; 70: 10310-10320
        • Milhollen M.A.
        • Traore T.
        • Adams-Duffy J.
        • Thomas M.P.
        • Berger A.J.
        • Dang L.
        • et al.
        MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-κB–dependent lymphoma.
        Blood. 2010; 116: 1515-1523
        • Swords R.T.
        • Kelly K.R.
        • Smith P.G.
        • Garnsey J.J.
        • Mahalingam D.
        • Medina E.
        • et al.
        Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.
        Blood. 2010; 115: 3796-3800
        • Wang X.
        • Zhang W.
        • Yan Z.
        • Liang Y.
        • Li L.
        • Yu X.
        • et al.
        Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells.
        Oncotarget. 2016; 7: 38380-38391
        • Wei D.
        • Li H.
        • Yu J.
        • Sebolt J.T.
        • Zhao L.
        • Lawrence T.S.
        • et al.
        Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor.
        Cancer Res. 2012; 72: 282-293
        • Yang D.
        • Tan M.
        • Wang G.
        • Sun Y.
        The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme.
        PloS One. 2012; 7: e34079
        • Wan J.
        • Zhu J.
        • Li G.
        • Zhang Z.
        Radiosensitization of human colorectal cancer cells by MLN4924 an inhibitor of NEDD8-activating enzyme.
        Technol Cancer Res Treat. 2016; 15: 527-534
        • Mayer M.P.
        • Le Breton L.
        Hsp90: breaking the symmetry.
        Molecular Cell. 2015; 58: 8-20
        • Wandinger S.K.
        • Richter K.
        • Buchner J.
        The Hsp90 chaperone machinery.
        J Biol Chem. 2008; 283: 18473-18477
        • Mahalingam D.
        • Swords R.
        • Carew J.
        • Nawrocki S.
        • Bhalla K.
        • Giles F.
        Targeting HSP90 for cancer therapy.
        Br J Cancer. 2009; 100: 1523-1529
        • McClellan A.J.
        • Xia Y.
        • Deutschbauer A.M.
        • Davis R.W.
        • Gerstein M.
        • Frydman J.
        Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches.
        Cell. 2007; 131: 121-135
        • Young J.C.
        • Moarefi I.
        • Hartl F.U.
        Hsp90: a specialized but essential protein-folding tool.
        J Cell Biol. 2001; 154: 267-274
        • Picard D.
        Heat-shock protein 90, a chaperone for folding and regulation.
        Cell Mol Life Sci. 2002; 59: 1640-1648
        • Miyata Y.
        • Nakamoto H.
        • Neckers L.
        The therapeutic target Hsp90 and cancer hallmarks.
        Curr Pharma Design. 2013; 19: 347-365
        • Solit D.B.
        • Scher H.I.
        • Rosen N.
        Hsp90 as a therapeutic target in prostate cancer. Seminars in oncology.
        Elsevier, 2003: 709-716
        • Alcorn S.
        • Walker A.J.
        • Gandhi N.
        • Narang A.
        • Wild A.T.
        • Hales R.K.
        • et al.
        Molecularly targeted agents as radiosensitizers in cancer therapy—focus on prostate cancer.
        Int J Mol Sci. 2013; 14: 14800-14832
        • Nagaraju G.P.
        • Long T.E.
        • Park W.
        • Landry J.C.
        • Taliaferro-Smith L.
        • Farris A.B.
        • et al.
        Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer.
        Mol Carcinogen. 2015; 54: 1147-1158
        • Rae C.
        • Mairs R.J.
        Evaluation of the radiosensitizing potency of chemotherapeutic agents in prostate cancer cells.
        Int J Radiat Biol. 2016; 1–10
        • Schilling D.
        • Bayer C.
        • Li W.
        • Molls M.
        • Vaupel P.
        • Multhoff G.
        Radiosensitization of normoxic and hypoxic H1339 lung tumor cells by heat shock protein 90 inhibition is independent of hypoxia inducible factor-1α.
        PloS One. 2012; 7: e31110
        • Zaidi S.
        • McLaughlin M.
        • Bhide S.A.
        • Eccles S.A.
        • Workman P.
        • Nutting C.M.
        • et al.
        The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage.
        PloS One. 2012; 7: e35436
        • Camphausen K.
        • Tofilon P.J.
        Inhibition of Hsp90: a multitarget approach to radiosensitization.
        Clinical Cancer Res. 2007; 13: 4326-4330
        • Kamal A.
        • Thao L.
        • Sensintaffar J.
        • Zhang L.
        • Boehm M.F.
        • Fritz L.C.
        • et al.
        A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors.
        Nature. 2003; 425: 407-410
        • Grbovic O.
        • Basso A.
        • Sawai A.
        • Ye Q.
        • Friedlander P.
        • Solit D.
        • et al.
        V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors.
        PNAS. 2006; 103: 57-62
        • Noguchi M.
        • Yu D.
        • Hirayama R.
        • Ninomiya Y.
        • Sekine E.
        • Kubota N.
        • et al.
        Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin.
        Biochem Biophys Res Commun. 2006; 351: 658-663
        • Eccles S.A.
        • Massey A.
        • Raynaud F.I.
        • Sharp S.Y.
        • Box G.
        • Valenti M.
        • et al.
        NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis.
        Cancer Res. 2008; 68: 2850-2860
        • Russell J.S.
        • Burgan W.
        • Oswald K.A.
        • Camphausen K.
        • Tofilon P.J.
        Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin.
        Clin Cancer Res. 2003; 9: 3749-3755
        • Dote H.
        • Cerna D.
        • Burgan W.E.
        • Camphausen K.
        • Tofilon P.J.
        ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition.
        Cancer Res. 2005; 65: 6967-6975
        • Yin X.
        • Zhang H.
        • Lundgren K.
        • Wilson L.
        • Burrows F.
        • Shores C.G.
        BIIB021, a novel Hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy.
        Int J Cancer. 2010; 126: 1216-1225
        • Machida H.
        • Nakajima S.
        • Shikano N.
        • Nishio J.
        • Okada S.
        • Asayama M.
        • et al.
        Heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin potentiates the radiation response of tumor cells grown as monolayer cultures and spheroids by inducing apoptosis.
        Cancer Sci. 2005; 96: 911-917
        • Moran D.M.
        • Gawlak G.
        • Jayaprakash M.S.
        • Mayar S.
        • Maki C.G.
        Geldanamycin promotes premature mitotic entry and micronucleation in irradiated p53/p21 deficient colon carcinoma cells.
        Oncogene. 2008; 27: 5567-5577
        • Egorin M.J.
        • Rosen D.M.
        • Wolff J.H.
        • Callery P.S.
        • Musser S.M.
        • Eiseman J.L.
        Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations.
        Cancer Res. 1998; 58: 2385-2396
        • Kelland L.R.
        • Sharp S.Y.
        • Rogers P.M.
        • Myers T.G.
        • Workman P.
        DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90.
        J Natl Cancer Inst. 1999; 91: 1940-1949
        • Hollingshead M.
        • Alley M.
        • Burger A.M.
        • Borgel S.
        • Pacula-Cox C.
        • Fiebig H.-H.
        • et al.
        In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative.
        Cancer Chemother Pharmacol. 2005; 56: 115-125
        • Jez J.M.
        • Chen J.C.-H.
        • Rastelli G.
        • Stroud R.M.
        • Santi D.V.
        Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90.
        Chem Biol. 2003; 10: 361-368
        • Egorin M.J.
        • Lagattuta T.F.
        • Hamburger D.R.
        • Covey J.M.
        • White K.D.
        • Musser S.M.
        • et al.
        Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats.
        Cancer Chemother Pharmacol. 2002; 49: 7-19
        • Bull E.E.
        • Dote H.
        • Brady K.J.
        • Burgan W.E.
        • Carter D.J.
        • Cerra M.A.
        • et al.
        Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin.
        Clin Cancer Res. 2004; 10: 8077-8084
        • Brough P.A.
        • Aherne W.
        • Barril X.
        • Borgognoni J.
        • Boxall K.
        • Cansfield J.E.
        • et al.
        4, 5-diarylisoxazole Hsp90 chaperone inhibitors.
        J Med Chem. 2008; 51: 196-218
        • Dymock B.W.
        • Barril X.
        • Brough P.A.
        • Cansfield J.E.
        • Massey A.
        • McDonald E.
        • et al.
        Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design.
        J Med Chem. 2005; 48: 4212-4215
        • Sharp S.Y.
        • Boxall K.
        • Rowlands M.
        • Prodromou C.
        • Roe S.M.
        • Maloney A.
        • et al.
        In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors.
        Cancer Res. 2007; 67: 2206-2216
        • Sharp S.Y.
        • Prodromou C.
        • Boxall K.
        • Powers M.V.
        • Holmes J.L.
        • Box G.
        • et al.
        Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues.
        Mol Cancer Therap. 2007; 6: 1198-1211
        • Gao Z.
        • Garcia-Echeverria C.
        • Jensen M.R.
        Hsp90 inhibitors: clinical development and future opportunities in oncology therapy.
        Curr Opin Drug Discov Dev. 2010; 13: 193-202
        • Gandhi N.
        • Wild A.T.
        • Chettiar S.T.
        • Aziz K.
        • Kato Y.
        • Gajula R.P.
        • et al.
        Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells.
        Cancer Biol Therapy. 2013; 14: 347-356
        • Xiao W.
        • Graham P.H.
        • Power C.A.
        • Hao J.
        • Kearsley J.H.
        • Li Y.
        CD44 is a biomarker associated with human prostate cancer radiation sensitivity.
        Clin Exp Metastasis. 2012; 29: 1-9
        • Naor D.
        • Sionov R.V.
        • Ish-Shalom D.
        CD44: structure, function, and association with the malignant process.
        Adv Cancer Res. 1997; 71: 241-319
        • Naor D.
        • Wallach-Dayan S.B.
        • Zahalka M.A.
        • Sionov R.V.
        Involvement of CD44, a molecule with a thousand faces, in cancer dissemination.
        Semin Cancer Biol. 2008; 18: 260-267
        • Ponta H.
        • Sherman L.
        • Herrlich P.A.
        CD44: from adhesion molecules to signalling regulators.
        Nat Rev Mol Cell Biol. 2003; 4: 33-45
        • Draffin J.E.
        • McFarlane S.
        • Hill A.
        • Johnston P.G.
        • Waugh D.J.
        CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells.
        Cancer Res. 2004; 64: 5702-5711
        • Hao J.
        • Chen H.
        • Madigan M.C.
        • Cozzi P.J.
        • Beretov J.
        • Xiao W.
        • et al.
        Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression.
        Br J Cancer. 2010; 103: 1008-1018
        • Hao J.
        • Cozzi P.
        • Khatri A.
        • Power C.
        • Li Y.
        CD147/EMMPRIN and CD44 are potential therapeutic targets for metastatic prostate cancer.
        Curr Cancer Drug Targets. 2010; 10: 287-306
        • Bourguignon L.Y.
        • Peyrollier K.
        • Xia W.
        • Gilad E.
        Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells.
        J Biol Chem. 2008; 283: 17635-17651
        • Rycaj K.
        • Tang D.G.
        Cancer stem cells and radioresistance.
        Int J Radiat Biol. 2014; 90: 615-621
        • Lagadec C.
        • Vlashi E.
        • Della Donna L.
        • Dekmezian C.
        • Pajonk F.
        Radiation-induced reprogramming of breast cancer cells.
        Stem Cells. 2012; 30: 833-844
        • Ghisolfi L.
        • Keates A.C.
        • Hu X.
        • Lee D.K.
        • Li C.J.
        Ionizing radiation induces stemness in cancer cells.
        PLoS One. 2012; 7: e43628
        • Peitzsch C.
        • Cojoc M.
        • Hein L.
        • Kurth I.
        • Mabert K.
        • Trautmann F.
        • et al.
        An epigenetic reprogramming strategy to resensitize radioresistant prostate cancer cells.
        Cancer Res. 2016; 76: 2637-2651
        • Desai A.
        • Webb B.
        • Gerson S.L.
        CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells.
        Radiother Oncol. 2014; 110: 538-545
        • Kim Y.S.
        • Kang M.J.
        • Cho Y.M.
        Low production of reactive oxygen species and high DNA repair: mechanism of radioresistance of prostate cancer stem cells.
        Anticancer Res. 2013; 33: 4469-4474
        • Merchant A.A.
        • Matsui W.
        Targeting Hedgehog–a cancer stem cell pathway.
        Clin Cancer Res. 2010; 16: 3130-3140
        • Fu J.
        • Rodova M.
        • Roy S.K.
        • Sharma J.
        • Singh K.P.
        • Srivastava R.K.
        • et al.
        GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft.
        Cancer Lett. 2013; 330: 22-32
        • Collins A.T.
        • Berry P.A.
        • Hyde C.
        • Stower M.J.
        • Maitland N.J.
        Prospective identification of tumorigenic prostate cancer stem cells.
        Cancer Res. 2005; 65: 10946-10951
        • Ni J.
        • Cozzi P.J.
        • Hao J.L.
        • Beretov J.
        • Chang L.
        • Duan W.
        • et al.
        CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance.
        Prostate. 2014; 74: 602-617
        • van Leenders G.J.
        • Sookhlall R.
        • Teubel W.J.
        • de Ridder C.M.
        • Reneman S.
        • Sacchetti A.
        • et al.
        Activation of c-MET induces a stem-like phenotype in human prostate cancer.
        PLoS One. 2011; 6: e26753
        • Hernandez-Vargas H.
        • Sincic N.
        • Ouzounova M.
        • Herceg Z.
        Epigenetic signatures in stem cells and cancer stem cells.
        Epigenomics. 2009; 1: 261-280
        • Pathania R.
        • Ramachandran S.
        • Mariappan G.
        • Thakur P.
        • Shi H.
        • Choi J.H.
        • et al.
        Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth.
        Cancer Res. 2016; 76: 3224-3235
        • Chatterjee P.
        • Choudhary G.S.
        • Sharma A.
        • Singh K.
        • Heston W.D.
        • Ciezki J.
        • et al.
        PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells.
        PloS One. 2013; 8: e60408
        • Chatterjee P.
        • Choudhary G.S.
        • Alswillah T.
        • Xiong X.
        • Heston W.D.
        • Magi-Galluzzi C.
        • et al.
        The TMPRSS2–ERG gene fusion blocks XRCC4-mediated nonhomologous end-joining repair and radiosensitizes prostate cancer cells to PARP inhibition.
        Mol Cancer Ther. 2015; 14: 1896-1906
        • Ghashghaei M.
        • Paliouras M.
        • Heravi M.
        • Bekerat H.
        • Trifiro M.
        • Niazi T.M.
        • et al.
        Enhanced radiosensitization of enzalutamide via schedule dependent administration to androgen-sensitive prostate cancer cells.
        Prostate. 2018; 78: 64-75
        • Ahmad I.U.
        • Forman J.D.
        • Sarkar F.H.
        • Hillman G.G.
        • Heath E.
        • Vaishampayan U.
        • et al.
        Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer.
        Nutr Cancer. 2010; 62: 996-1000
        • Jones C.U.
        • Hunt D.
        • McGowan D.G.
        • Amin M.B.
        • Chetner M.P.
        • Bruner D.W.
        • et al.
        Radiotherapy and short-term androgen deprivation for localized prostate cancer.
        N Engl J Med. 2011; 365: 107-118
        • Lawton C.A.
        • Winter K.
        • Murray K.
        • Machtay M.
        • Mesic J.B.
        • Hanks G.E.
        • et al.
        Updated results of the phase III Radiation Therapy Oncology Group (RTOG) trial 85–31 evaluating the potential benefit of androgen suppression following standard radiation therapy for unfavorable prognosis carcinoma of the prostate.
        Int J Radiat Oncol Biol Phys. 2001; 49: 937-946
        • Lawton C.A.
        • Winter K.
        • Grignon D.
        • Pilepich M.V.
        Androgen suppression plus radiation versus radiation alone for patients with stage D1/pathologic node-positive adenocarcinoma of the prostate: updated results based on national prospective randomized trial Radiation Therapy Oncology Group 85–31.
        J Clin Oncol. 2005; 23: 800-807
        • Pilepich M.V.
        • Winter K.
        • Lawton C.A.
        • Krisch R.E.
        • Wolkov H.B.
        • Movsas B.
        • et al.
        Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85–31.
        Int J Radiat Oncol Biol Phys. 2005; 61: 1285-1290
        • Carrie C.
        • Hasbini A.
        • de Laroche G.
        • Richaud P.
        • Guerif S.
        • Latorzeff I.
        • et al.
        Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial.
        Lancet Oncol. 2016; 17: 747-756