Advertisement

Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus

      Abstract

      Purpose

      For unbiased comparison of different radiation modalities and techniques, consensus on delineation of radiation sensitive organs at risk (OARs) and on their dose constraints is warranted. Following the publication of a digital, online atlas for OAR delineation in neuro-oncology by the same group, we assessed the brain OAR-dose constraints in a follow-up study.

      Methods

      We performed a comprehensive search to identify the current papers on OAR dose constraints for normofractionated photon and particle therapy in PubMed, Ovid Medline, Cochrane Library, Embase and Web of Science. Moreover, the included articles’ reference lists were cross-checked for potential studies that met the inclusion criteria. Consensus was reached among 20 radiation oncology experts in the field of neuro-oncology.

      Results

      For the OARs published in the neuro-oncology literature, we summarized the available literature and recommended dose constraints associated with certain levels of normal tissue complication probability (NTCP) according to the recent ICRU recommendations. For those OARs with lacking or insufficient NTCP data, a proposal for effective and efficient data collection is given.

      Conclusion

      The use of the European Particle Therapy Network-consensus OAR dose constraints summarized in this article is recommended for the model-based approach comparing photon and proton beam irradiation as well as for prospective clinical trials including novel radiation techniques and/or modalities.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eekers D.B.
        • in ‘t Ven L.
        • Roelofs E.
        • Postma A.
        • Alapetite C.
        • Burnet N.G.
        • et al.
        The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology.
        Radiother Oncol. 2018; 128: 37-43https://doi.org/10.1016/j.radonc.2017.12.013
        • Eekersin D.B.
        • in ’t Ven L.
        • Roelofs E.
        • Postma A.
        Troost EGC EPTN International Neurological Contouring Atlas.
        Cancer Data. 2017; https://doi.org/10.17195/candat.2017.08.1
        • Emami B.
        • Lyman J.
        • Brown A.
        • Coia L.
        • Goitein M.
        • Munzenrider J.E.
        • et al.
        Tolerance of normal tissue to therapeutic irradiation.
        Int J Radiat Oncol Biol Phys. 1991; 21: 109-122
        • Marks L.B.
        • Yorke E.D.
        • Jackson A.
        • Ten Haken R.K.
        • Constine L.S.
        • Eisbruch A.
        • et al.
        Use of normal tissue complication probability models in the clinic.
        Int J Radiat Oncol Biol Phys. 2010; 76: S10-S19https://doi.org/10.1016/j.ijrobp.2009.07.1754
        • Mayo C.
        • Martel M.K.
        • Marks L.B.
        • Flickinger J.
        • Nam J.
        • Kirkpatrick J.
        Radiation dose-volume effects of optic nerves and chiasm.
        Int J Radiat Oncol. 2010; 76: S28-S35https://doi.org/10.1016/j.ijrobp.2009.07.1753
        • Mayo C.
        • Yorke E.
        • Merchant T.E.
        Radiation associated brainstem injury.
        Int J Radiat Oncol Biol Phys. 2010; 76: S36-S41https://doi.org/10.1016/j.ijrobp.2009.08.078
        • Lawrence Y.R.
        • Li X.A.
        • el Naqa I.
        • Hahn C.A.
        • Marks L.B.
        • Merchant T.E.
        • et al.
        Radiation dose-volume effects in the brain.
        Int J Radiat Oncol Biol Phys. 2010; 76: S20-S27https://doi.org/10.1016/j.ijrobp.2009.02.091
        • Woo Y.J.
        • Ko J.
        • Ji Y.W.
        • Kim T.
        • Yoon J.S.
        Meibomian gland dysfunction associated with periocular radiotherapy.
        Cornea. 2017; 36: 1486-1491https://doi.org/10.1097/ICO.0000000000001377
        • Parsons J.T.
        • Bova F.J.
        • Fitzgerald C.R.
        • Mendenhall W.M.
        • Million R.R.
        Severe dry-eye syndrome following external beam irradiation.
        Int J Radiat Oncol Biol Phys. 1994; 30: 775-780
        • Thariat J.
        • Maschi C.
        • Lanteri S.
        • Peyrichon M.L.
        • Baillif S.
        • Herault J.
        • et al.
        Dry eye syndrome after proton therapy of ocular melanomas.
        Int J Radiat Oncol Biol Phys. 2017; 98: 142-151https://doi.org/10.1016/j.ijrobp.2017.01.199
        • Bhandare N.
        • Moiseenko V.
        • Song W.Y.
        • Morris C.G.
        • Tariq Bhatti M.
        • Mendenhall W.M.
        Severe dry eye syndrome after radiotherpay for head-and-neck tumors.
        Radiat Oncol Biol. 2012; 82: 1501-1508https://doi.org/10.1016/j.ijrobp.2011.05.026
      1. Cancer Institute N. Common Terminology Criteria for Adverse Events (CTCAE) Common Terminology Criteria for Adverse Events v4.0 (CTCAE); 2009.

        • Nakissa N.
        • Rubin P.
        • Strohl R.
        • Keys H.
        Ocular and orbital complications following radiation therapy of paranasal sinus malignancies and review of literature.
        Cancer. 1983; 51: 980-986https://doi.org/10.1002/1097-0142(19830315)51:6<980::AID-CNCR2820510603>3.0.CO;2-Y
        • Bessell E.M.
        • Henk J.M.
        • Whitelocke R.A.F.
        • Wright J.E.
        Ocular morbidity after radiotherapy of orbital and conjunctival lymphoma.
        Eye. 1987; 1: 90-96https://doi.org/10.1038/eye.1987.14
        • Letschert J.G.
        • González González D.
        • Oskam J.
        • Koornneef L.
        • van Dijk J.D.
        • Boukes R.
        • et al.
        Results of radiotherapy in patients with stage I orbital non-Hodgkin’s lymphoma.
        Radiother Oncol. 1991; 22: 36-44
        • Batth S.S.
        • Sreeraman R.
        • Dienes E.
        • Beckett L.A.
        • Daly M.E.
        • Cui J.
        • et al.
        Clinical-dosimetric relationship between lacrimal gland dose and ocular toxicity after intensity-modulated radiotherapy for sinonasal tumours.
        Br J Radiol. 2013; 86: 20130459https://doi.org/10.1259/bjr.20130459
      2. Parsons JT, Bova FJ, Mendenhall WM, Million RR, Fitzgerald CR. Response of the normal eye to high dose radiotherapy. Oncology (Williston Park) 1996;10:837-47-8, 851–2.

        • Jeganathan V.S.E.
        • Wirth A.
        • MacManus M.P.
        Ocular risks from orbital and periorbital radiation therapy: a critical review.
        Int J Radiat Oncol. 2011; 79: 650-659https://doi.org/10.1016/j.ijrobp.2010.09.056
        • Kehwar T.S.
        Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model.
        J Cancer Res Ther. 2005; 1: 168-179https://doi.org/10.4103/0973-1482.19597
        • Barabino S.
        • Raghavan A.
        • Loeffler J.
        • Dana R.
        Radiotherapy-induced ocular surface disease.
        Cornea. 2005; 24: 909-914
      3. Gore SK, Plowman NP, Dharmasena A, Verity DH, Rose GE. Corneal complications after orbital radiotherapy for primary epithelial malignancies of the lacrimal gland. Br J Ophthalmol 2017:bjophthalmol-2017-311134. doi:10.1136/bjophthalmol-2017-311134.

        • Archer D.B.
        • Amoaku W.M.K.
        • Gardiner T.A.
        Radiation retinopathy—Clinical, histopathological, ultrastructural and experimental correlations.
        Eye. 1991; 5: 239-251https://doi.org/10.1038/eye.1991.39
        • Parsons J.T.
        • Bova F.J.
        • Fitzgerald C.R.
        • Mendenhall W.M.
        • Million R.R.
        Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors.
        Int J Radiat Oncol Biol Phys. 1994; 30: 755-763
        • Gupta A.
        • Dhawahir-Scala F.
        • Smith A.
        • Young L.
        • Charles S.
        Radiation retinopathy: case report and review.
        BMC Ophthalmol. 2007; 7: 6https://doi.org/10.1186/1471-2415-7-6
        • Brown G.C.
        • Shields J.A.
        • Sanborn G.
        • Augsburger J.J.
        • Savino P.J.
        • Schatz N.J.
        Radiation retinopathy.
        Ophthalmology. 1982; 89: 1494-1501
        • Takeda A.
        • Shigematsu N.
        • Suzuki S.
        • Fujii M.
        • Kawata T.
        • Kawaguchi O.
        • et al.
        Late retinal complications of radiation therapy for nasal and paranasal malignancies: relationship between irradiated-dose area and severity.
        Int J Radiat Oncol Biol Phys. 1999; 44: 599-605
        • Durkin S.R.
        • Roos D.
        • Higgs B.
        • Casson R.J.
        • Selva D.
        Ophthalmic and adnexal complications of radiotherapy.
        Acta Ophthalmol Scand. 2007; 85: 240-250https://doi.org/10.1111/j.1600-0420.2006.00822.x
        • Viebahn M.
        • Barricks M.E.
        • Osterloh M.D.
        Synergism between diabetic and radiation retinopathy: case report and review.
        Br J Ophthalmol. 1991; 75: 629-632
        • Chan R.C.
        • Shukovsky L.J.
        Effects of irradiation on the eye.
        Radiology. 1976; 120: 673-675https://doi.org/10.1148/120.3.673
        • Parsons J.T.
        • Bova F.J.
        • Fitzgerald C.R.
        • Mendenhall W.M.
        • Million R.R.
        Radiation retinopathy after external-beam irradiation: analysis of time-dose factors.
        Int J Radiat Oncol Biol Phys. 1994; 30: 765-773
        • Evans J.R.
        • Sivagnanavel V.
        • Chong V.
        Radiotherapy for neovascular age-related macular degeneration.
        in: Chong V. Cochrane Database Syst. Rev. John Wiley & Sons, Ltd, Chichester, UK2010: CD004004https://doi.org/10.1002/14651858.CD004004.pub3
        • Gordon K.B.
        • Char D.H.
        • Sagerman R.H.
        Late effects of radiation on the eye and ocular adnexa.
        Int J Radiat Oncol. 1995; 31: 1123-1139https://doi.org/10.1016/0360-3016(95)00062-4
        • Worgul B.V.
        • Merriam G.R.
        • Szechter A.
        • Srinivasan D.
        Lens epithelium and radiation cataract. I. Preliminary studies.
        Arch Ophthalmol (Chicago, Ill 1960). 1976; 94: 996-999
        • Worgul B.V.
        • Merriam G.R.
        • Medvedovsky C.
        Cortical cataract development–an expression of primary damage to the lens epithelium.
        Lens Eye Toxic Res. 1989; 6: 559-571
        • Merriam G.R.
        • Worgul B.V.
        • Worgul B.V.
        Experimental radiation cataract–its clinical relevance.
        Bull N Y Acad Med. 1983; 59: 372-392
        • Henk J.M.
        • Whitelocke R.A.
        • Warrington A.P.
        • Bessell E.M.
        Radiation dose to the lens and cataract formation.
        Int J Radiat Oncol Biol Phys. 1993; 25: 815-820
        • Deeg H.J.J.
        • Flournoy N.
        • Sullivan K.M.
        • Sheehan K.
        • Buckner C.D.D.
        • Sanders J.E.
        • et al.
        Cataracts after total body irradiation and marrow transplantation: a sparing effect of dose fractionation.
        Int J Radiat Oncol Biol Phys. 1984; 10: 957-964https://doi.org/10.1016/0360-3016(84)90163-9
        • Merriam G.R.
        • Focht E.F.
        A clinical study of radiation cataracts and the relationship to dose.
        Am J Roentgenol Radium Ther Nucl Med. 1957; 77: 759-785
        • Schipper J.
        • Tan K.E.
        • van Peperzeel H.A.
        Treatment of retinoblastoma by precision megavoltage radiation therapy.
        Radiother Oncol. 1985; 3: 117-132
        • Kleiman N.J.
        Radiation cataract.
        Ann ICRP. 2012; 41: 80-97https://doi.org/10.1016/j.icrp.2012.06.018
        • Stewart F.A.
        • Akleyev A.V.
        • Hauer-Jensen M.
        • Hendry J.H.
        • Kleiman N.J.
        • MacVittie T.J.
        • et al.
        ICRP PUBLICATION 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs—Threshold Doses for Tissue Reactions in a Radiation Protection Context.
        Ann ICRP. 2012; 41: 1-322https://doi.org/10.1016/j.icrp.2012.02.001
        • Schenken L.L.
        • Hagemann R.F.
        Time/dose relationships in experimental radiation cataractogenesis.
        Radiology. 1975; 117: 193-198https://doi.org/10.1148/117.1.193
        • Hall M.D.
        • Schultheiss T.E.
        • Smith D.D.
        • Nguyen K.H.
        • Wong J.Y.C.
        Dose response for radiation cataractogenesis: a meta-regression of hematopoietic stem cell transplantation regimens.
        Int J Radiat Oncol Biol Phys. 2015; 91: 22-29https://doi.org/10.1016/j.ijrobp.2014.07.049
        • Forrest A.P.
        • Brown D.A.P.
        • Morris S.R.
        • Illingsworth C.F.
        Pituitary radon implant for advanced cancer.
        Lancet (London, England). 1956; 270: 399-401
        • Kline L.B.
        • Kim J.Y.
        • Ceballos R.
        Radiation optic neuropathy.
        Ophthalmology. 1985; 92: 1118-1126
        • Danesh-Meyer H.V.
        Radiation-induced optic neuropathy.
        J Clin Neurosci. 2008; 15: 95-100https://doi.org/10.1016/j.jocn.2007.09.004
        • McClellan R.L.
        • el Gammal T.
        • Kline L.B.
        Early bilateral radiation-induced optic neuropathy with follow-up MRI.
        Neuroradiology. 1995; 37: 131-133
        • Jiang G.L.
        • Tucker S.L.
        • Guttenberger R.
        • Peters L.J.
        • Morrison W.H.
        • Garden A.S.
        • et al.
        Radiation-induced injury to the visual pathway.
        Radiother Oncol. 1994; 30: 17-25
        • Goldsmith B.J.
        • Rosenthal S.A.
        • Wara W.M.
        • Larson D.A.
        Optic neuropathy after irradiation of meningioma.
        Radiology. 1992; 185: 71-76https://doi.org/10.1148/radiology.185.1.1523337
        • Martel M.K.
        • Sandler H.M.
        • Cornblath W.T.
        • Marsh L.H.
        • Hazuka M.B.
        • Roa W.H.
        • et al.
        Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors.
        Int J Radiat Oncol Biol Phys. 1997; 38: 273-284
        • Flickinger J.C.
        • Lunsford L.D.
        • Singer J.
        • Cano E.R.
        • Deutsch M.
        Megavoltage external beam irradiation of craniopharyngiomas: analysis of tumor control and morbidity.
        Int J Radiat Oncol Biol Phys. 1990; 19: 117-122
        • Hoppe B.S.
        • Stegman L.D.
        • Zelefsky M.J.
        • Rosenzweig K.E.
        • Wolden S.L.
        • Patel S.G.
        • et al.
        Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting—the MSKCC experience.
        Int J Radiat Oncol. 2007; 67: 691-702https://doi.org/10.1016/j.ijrobp.2006.09.023
        • Mackley H.B.
        • Reddy C.A.
        • Lee S.-Y.
        • Harnisch G.A.
        • Mayberg M.R.
        • Hamrahian A.H.
        • et al.
        Intensity-modulated radiotherapy for pituitary adenomas: the preliminary report of the Cleveland Clinic experience.
        Int J Radiat Oncol Biol Phys. 2007; 67: 232-239https://doi.org/10.1016/j.ijrobp.2006.08.039
        • Bhandare N.
        • Monroe A.T.
        • Morris C.G.
        • Bhatti M.T.
        • Mendenhall W.M.
        Does altered fractionation influence the risk of radiation-induced optic neuropathy?.
        Int J Radiat Oncol. 2005; 62: 1070-1077https://doi.org/10.1016/j.ijrobp.2004.12.009
        • Bhide S.A.
        • Harrington K.J.
        • Nutting C.M.
        Otological toxicity after postoperative radiotherapy for parotid tumours.
        Clin Oncol (R Coll Radiol). 2007; 19: 77-82
        • Raaijmakers E.
        • Engelen A.M.
        Is sensorineural hearing loss a possible side effect of nasopharyngeal and parotid irradiation? A systematic review of the literature.
        Radiother Oncol. 2002; 65: 1-7
        • Kwong D.L.
        • Wei W.I.
        • Sham J.S.
        • Ho W.K.
        • Yuen P.W.
        • Chua D.T.
        • et al.
        Sensorineural hearing loss in patients treated for nasopharyngeal carcinoma: a prospective study of the effect of radiation and cisplatin treatment.
        Int J Radiat Oncol Biol Phys. 1996; 36: 281-289
        • Pan C.C.
        • Eisbruch A.
        • Lee J.S.
        • Snorrason R.M.
        • Ten Haken R.K.
        • Kileny P.R.
        Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients.
        Int J Radiat Oncol Biol Phys. 2005; 61: 1393-1402https://doi.org/10.1016/j.ijrobp.2004.08.019
        • Chen W.C.
        • Jackson A.
        • Budnick A.S.
        • Pfister D.G.
        • Kraus D.H.
        • Hunt M.A.
        • et al.
        Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma.
        Cancer. 2006; 106: 820-829https://doi.org/10.1002/cncr.21683
        • Honoré H.B.
        • Bentzen S.M.
        • Møller K.
        • Grau C.
        Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation.
        Radiother Oncol. 2002; 65: 9-16
        • Borsanyi S.J.
        • Blanchard C.L.
        Ionizing radiation and the ear.
        JAMA J Am Med Assoc. 1962; 181: 958https://doi.org/10.1001/jama.1962.03050370026006
        • Leach W.
        Irradiation of the ear.
        J Laryngol Otol. 1965; 79: 870-880https://doi.org/10.1017/S0022215100064495
        • Linskey M.E.
        • Johnstone P.A.
        Radiation tolerance of normal temporal bone structures: implications for gamma knife stereotactic radiosurgery.
        Int J Radiat Oncol. 2003; 57: 196-200https://doi.org/10.1016/S0360-3016(03)00413-9
        • Oh Y.-T.
        • Kim C.-H.
        • Choi J.-H.
        • Kang S.-H.
        • Chun M.
        Sensory neural hearing loss after concurrent cisplatin and radiation therapy for nasopharyngeal carcinoma.
        Radiother Oncol. 2004; 72: 79-82https://doi.org/10.1016/j.radonc.2004.02.009
        • Bhandare N.
        • Jackson A.
        • Eisbruch A.
        • Pan C.C.
        • Flickinger J.C.
        • Antonelli P.
        • et al.
        Radiation therapy and hearing loss.
        Int J Radiat Oncol Biol Phys. 2010; 76: S50-S57https://doi.org/10.1016/j.ijrobp.2009.04.096
        • De Marzi L.
        • Feuvret L.
        • Boulé T.
        • Habrand J.-L.
        • Martin F.
        • Calugaru V.
        • et al.
        Use of gEUD for predicting ear and pituitary gland damage following proton and photon radiation therapy.
        Br J Radiol. 2015; 88: 20140413https://doi.org/10.1259/bjr.20140413
        • Lee T.-F.
        • Yeh S.-A.
        • Chao P.-J.
        • Chang L.
        • Chiu C.-L.
        • Ting H.-M.
        • et al.
        Normal tissue complication probability modeling for cochlea constraints to avoid causing tinnitus after head-and-neck intensity-modulated radiation therapy.
        Radiat Oncol. 2015; 10: 194https://doi.org/10.1186/s13014-015-0501-x
        • van der Putten L.
        • de Bree R.
        • Plukker J.T.
        • Langendijk J.A.
        • Smits C.
        • Burlage F.R.
        • et al.
        Permanent unilateral hearing loss after radiotherapy for parotid gland tumors.
        Head Neck. 2006; 28: 902-908https://doi.org/10.1002/hed.20426
        • Tuan J.K.L.
        • Ha T.C.
        • Ong W.S.
        • Siow T.R.
        • Tham I.W.K.
        • Yap S.P.
        • et al.
        Late toxicities after conventional radiation therapy alone for nasopharyngeal carcinoma.
        Radiother Oncol. 2012; 104: 305-311https://doi.org/10.1016/J.RADONC.2011.12.028
        • Gabriele P.
        • Orecchia R.
        • Magnano M.
        • Albera R.
        • Sannazzari G.L.
        Vestibular apparatus disorders after external radiation therapy for head and neck cancers.
        Radiother Oncol. 1992; 25: 25-30
        • Lee V.H.F.
        • Ng S.C.Y.
        • Leung T.W.
        • Au G.K.H.
        • Kwong D.L.W.
        Dosimetric predictors of radiation-induced acute nausea and vomiting in IMRT for nasopharyngeal cancer.
        Int J Radiat Oncol. 2012; 84: 176-182https://doi.org/10.1016/J.IJROBP.2011.10.010
        • Tomlinson J.W.
        • Holden N.
        • Hills R.K.
        • Wheatley K.
        • Clayton R.N.
        • Bates A.S.
        • et al.
        Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group.
        Lancet (London, England). 2001; 357: 425-431https://doi.org/10.1016/S0140-6736(00)04006-X
        • Appelman-Dijkstra N.M.
        • Malgo F.
        • Neelis K.J.
        • Coremans I.
        • Biermasz N.R.
        • Pereira A.M.
        Pituitary dysfunction in adult patients after cranial irradiation for head and nasopharyngeal tumours.
        Radiother Oncol. 2014; 113: 102-107https://doi.org/10.1016/j.radonc.2014.08.018
        • Kyriakakis N.
        • Lynch J.
        • Orme S.M.
        • Gerrard G.
        • Hatfield P.
        • Loughrey C.
        • et al.
        Pituitary dysfunction following cranial radiotherapy for adult-onset nonpituitary brain tumours.
        Clin Endocrinol (Oxf). 2016; 84: 372-379https://doi.org/10.1111/cen.12969
        • Sherlock M.
        • Ayuk J.
        • Tomlinson J.W.
        • Toogood A.A.
        • Aragon-Alonso A.
        • Sheppard M.C.
        • et al.
        Mortality in patients with pituitary disease.
        Endocr Rev. 2010; 31: 301-342https://doi.org/10.1210/er.2009-0033
        • Agha A.
        • Sherlock M.
        • Brennan S.
        • O’Connor S.A.
        • O’Sullivan E.
        • Rogers B.
        • et al.
        Hypothalamic-pituitary dysfunction after irradiation of nonpituitary brain tumors in adults.
        J Clin Endocrinol Metab. 2005; 90: 6355-6360https://doi.org/10.1210/jc.2005-1525
        • Fernandez A.
        • Brada M.
        • Zabuliene L.
        • Karavitaki N.
        • Wass J.A.H.
        Radiation-induced hypopituitarism.
        Endocr Relat Cancer. 2009; 16: 733-772https://doi.org/10.1677/ERC-08-0231
        • Littley M.D.
        • Shalet S.M.
        • Beardwell C.G.
        • Ahmed S.R.
        • Applegate G.
        • Sutton M.L.
        Hypopituitarism following external radiotherapy for pituitary tumours in adults.
        Q J Med. 1989; 70: 145-160
        • Bhandare N.
        • Kennedy L.
        • Malyapa R.S.
        • Morris C.G.
        • Mendenhall W.M.
        Hypopituitarism after radiotherapy for extracranial head and neck cancers.
        Head Neck. 2008; 30: 1182-1192https://doi.org/10.1002/hed.20847
        • Pai H.H.
        • Thornton A.
        • Katznelson L.
        • Finkelstein D.M.
        • Adams J.A.
        • Fullerton B.C.
        • et al.
        Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis.
        Int J Radiat Oncol Biol Phys. 2001; 49: 1079-1092
        • Merchant T.E.
        • Goloubeva O.
        • Pritchard D.L.
        • Gaber M.W.
        • Xiong X.
        • Danish R.K.
        • et al.
        Radiation dose-volume effects on growth hormone secretion.
        Int J Radiat Oncol Biol Phys. 2002; 52: 1264-1270https://doi.org/10.1016/S0360-3016(01)02788-2
        • Brada M.
        • Rajan B.
        • Traish D.
        • Ashley S.
        • Holmes-Sellors P.J.
        • Nussey S.
        • et al.
        The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas.
        Clin Endocrinol (Oxf). 1993; 38: 571-578
        • Langsenlehner T.
        • Stiegler C.
        • Quehenberger F.
        • Feigl G.C.
        • Jakse G.
        • Mokry M.
        • et al.
        Long-term follow-up of patients with pituitary macroadenomas after postoperative radiation therapy.
        Strahlentherapie Und Onkol. 2007; 183: 241-247https://doi.org/10.1007/s00066-007-1706-1
        • Lam K.S.
        • Tse V.K.
        • Wang C.
        • Yeung R.T.
        • Ho J.H.
        Effects of cranial irradiation on hypothalamic-pituitary function–a 5-year longitudinal study in patients with nasopharyngeal carcinoma.
        Q J Med. 1991; 78: 165-176
        • Robinson I.C.
        • Fairhall K.M.
        • Hendry J.H.
        • Shalet S.M.
        Differential radiosensitivity of hypothalamo-pituitary function in the young adult rat.
        J Endocrinol. 2001; 169: 519-526
        • Su S.-F.
        • Huang Y.
        • Xiao W.
        • Huang S.-M.
        • Han F.
        • Xie C.
        • et al.
        Clinical and dosimetric characteristics of temporal lobe injury following intensity modulated radiotherapy of nasopharyngeal carcinoma.
        Radiother Oncol. 2012; 104: 312-316https://doi.org/10.1016/j.radonc.2012.06.012
        • Zhou X.
        • Ou X.
        • Xu T.
        • Wang X.
        • Shen C.
        • Ding J.
        • et al.
        Effect of dosimetric factors on occurrence and volume of temporal lobe necrosis following intensity modulated radiation therapy for nasopharyngeal carcinoma: a case-control study.
        Int J Radiat Oncol. 2014; 90: 261-269https://doi.org/10.1016/j.ijrobp.2014.05.036
        • McDonald M.W.
        • Linton O.R.
        • Calley C.S.J.
        Dose-volume relationships associated with temporal lobe radiation necrosis after skull base proton beam therapy.
        Int J Radiat Oncol. 2015; 91: 261-267https://doi.org/10.1016/j.ijrobp.2014.10.011
        • Pehlivan B.
        • Ares C.
        • Lomax A.J.
        • Stadelmann O.
        • Goitein G.
        • Timmermann B.
        • et al.
        Temporal lobe toxicity analysis after proton radiation therapy for skull base tumors.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1432-1440https://doi.org/10.1016/j.ijrobp.2011.10.042
        • Douw L.
        • Klein M.
        • Fagel S.S.
        • van den Heuvel J.
        • Taphoorn M.J.
        • Aaronson N.K.
        • et al.
        Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up.
        Lancet Neurol. 2009; 8: 810-818https://doi.org/10.1016/S1474-4422(09)70204-2
        • Guimas V.
        • Thariat J.
        • Graff-Cailleau P.
        • Boisselier P.
        • Pointreau Y.
        • Pommier P.
        • et al.
        Intensity modulated radiotherapy for head and neck cancer, dose constraint for normal tissue: Cochlea vestibular apparatus and brainstem.
        Cancer Radiother. 2016; 20: 475-483https://doi.org/10.1016/j.canrad.2016.07.077
        • Jian J.J.-M.
        • Cheng S.H.
        • Tsai S.Y.-C.
        • Yen K.-C.L.
        • Chu N.-M.
        • Chan K.-Y.
        • et al.
        Improvement of local control of T3 and T4 nasopharyngeal carcinoma by hyperfractionated radiotherapy and concomitant chemotherapy.
        Int J Radiat Oncol Biol Phys. 2002; 53: 344-352
        • Uy N.W.
        • Woo S.Y.
        • Teh B.S.
        • Mai W.Y.
        • Carpenter L.S.
        • Chiu J.K.
        • et al.
        Intensity-modulated radiation therapy (IMRT) for meningioma.
        Int J Radiat Oncol Biol Phys. 2002; 53: 1265-1270
        • Schoenfeld G.O.
        • Amdur R.J.
        • Morris C.G.
        • Li J.G.
        • Hinerman R.W.
        • Mendenhall W.M.
        Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer.
        Int J Radiat Oncol. 2008; 71: 377-385https://doi.org/10.1016/j.ijrobp.2007.10.010
        • Zheng Y.
        • Han F.
        • Xiao W.
        • Xiang Y.
        • Lu L.
        • Deng X.
        • et al.
        Analysis of late toxicity in nasopharyngeal carcinoma patients treated with intensity modulated radiation therapy.
        Radiat Oncol. 2015; 10: 17https://doi.org/10.1186/s13014-014-0326-z
        • Weber D.C.
        • Malyapa R.
        • Albertini F.
        • Bolsi A.
        • Kliebsch U.
        • Walser M.
        • et al.
        Long term outcomes of patients with skull-base low-grade chondrosarcoma and chordoma patients treated with pencil beam scanning proton therapy.
        Radiother Oncol. 2016; 120: 169-174https://doi.org/10.1016/j.radonc.2016.05.011
        • Nishimura H.
        • Ogino T.
        • Kawashima M.
        • Nihei K.
        • Arahira S.
        • Onozawa M.
        • et al.
        Proton-beam therapy for olfactory neuroblastoma.
        Int J Radiat Oncol. 2007; 68: 758-762https://doi.org/10.1016/j.ijrobp.2006.12.071
        • Noël G.
        • Feuvret L.
        • Calugaru V.
        • Dhermain F.
        • Mammar H.
        • Haie-Méder C.
        • et al.
        Chordomas of the base of the skull and upper cervical spine. One hundred patients irradiated by a 3D conformal technique combining photon and proton beams.
        Acta Oncol (Madr). 2005; 44: 700-708https://doi.org/10.1080/02841860500326257
        • Debus J.
        • Hug E.B.
        • Liebsch N.J.
        • O’Farrel D.
        • Finkelstein D.
        • Efird J.
        • et al.
        Brainstem tolerance to conformal radiotherapy of skull base tumors.
        Int J Radiat Oncol Biol Phys. 1997; 39: 967-975
        • Debus J.
        • Hug E.B.
        • Liebsch N.J.
        • O’Farrel D.
        • Finkelstein D.
        • Efird J.
        • et al.
        Dose-volume tolerance of the brainstem after high-dose radiotherapy.
        Front Radiat Ther Oncol. 1999; 33: 305-314
        • Burman C.
        • Kutcher G.J.
        • Emami B.
        • Goitein M.
        Fitting of normal tissue tolerance data to an analytic function.
        Int J Radiat Oncol Biol Phys. 1991; 21: 123-135
        • Merchant T.E.
        • Chitti R.M.
        • Li C.
        • Xiong X.
        • Sanford R.A.
        • Khan R.B.
        Factors Associated With Neurological Recovery of Brainstem Function Following Postoperative Conformal Radiation Therapy for Infratentorial Ependymoma.
        Int J Radiat Oncol Biol Phys. 2010; 76: 496-503https://doi.org/10.1016/j.ijrobp.2009.01.079
        • Greene-Schloesser D.
        • Robbins M.E.
        • Peiffer A.M.
        • Shaw E.G.
        • Wheeler K.T.
        • Chan M.D.
        Radiation-induced brain injury: a review.
        Front Oncol. 2012; 2: 73https://doi.org/10.3389/fonc.2012.00073
        • Makale M.T.
        • McDonald C.R.
        • Hattangadi-Gluth J.A.
        • Kesari S.
        Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours.
        Nat Rev Neurol. 2016; 13: 52-64https://doi.org/10.1038/nrneurol.2016.185
        • Connor M.
        • Karunamuni R.
        • McDonald C.
        • White N.
        • Pettersson N.
        • Moiseenko V.
        • et al.
        Dose-dependent white matter damage after brain radiotherapy.
        Radiother Oncol. 2016; 121: 209-216https://doi.org/10.1016/j.radonc.2016.10.003
        • Deng W.
        • Aimone J.B.
        • Gage F.H.
        New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?.
        Nat Rev Neurosci. 2010; 11: 339-350https://doi.org/10.1038/nrn2822
        • Gondi V.
        • Hermann B.P.
        • Mehta M.P.
        • Tomé W.A.
        Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors.
        Int J Radiat Oncol. 2013; 85: 348-354https://doi.org/10.1016/j.ijrobp.2012.11.031
        • Seibert T.M.
        • Karunamuni R.
        • Bartsch H.
        • Kaifi S.
        • Krishnan A.P.
        • Dalia Y.
        • et al.
        Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging.
        Int J Radiat Oncol. 2017; 97: 263-269https://doi.org/10.1016/j.ijrobp.2016.10.035
        • Eekers D.B.P.
        • in ’t Ven L.
        • Deprez S.
        • Jacobi L.
        • Roelofs E.
        • Hoeben A.
        • et al.
        The posterior cerebellum, a new organ at risk?.
        Clin Transl Radiat Oncol. 2018; 8: 22-26
        • Merchant T.E.
        • Sharma S.
        • Xiong X.
        • Wu S.
        • Conklin H.
        Effect of cerebellum radiation dosimetry on cognitive outcomes in children with infratentorial ependymoma.
        Int J Radiat Oncol Biol Phys. 2014; 90: 547-553https://doi.org/10.1016/j.ijrobp.2014.06.043
        • Hamilton C.S.
        • Potten C.S.
        • Denham J.W.
        • O’Brien P.C.
        • Kron T.
        • Ostwald P.
        • et al.
        Response of human hair cortical cells to fractionated radiotherapy.
        Radiother Oncol. 1997; 43: 289-292
        • Stram D.O.
        • Mizuno S.
        Analysis of the DS86 atomic bomb radiation dosimetry methods using data on severe epilation.
        Radiat Res. 1989; 117: 93-113
        • Lawenda B.D.
        • Gagne H.M.
        • Gierga D.P.
        • Niemierko A.
        • Wong W.M.
        • Tarbell N.J.
        • et al.
        Permanent alopecia after cranial irradiation: dose-response relationship.
        Int J Radiat Oncol Biol Phys. 2004; 60: 879-887https://doi.org/10.1016/j.ijrobp.2004.04.031
        • Langendijk J.A.
        • Lambin P.
        • De Ruysscher D.
        • Widder J.
        • Bos M.
        • Verheij M.
        Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach.
        Radiother Oncol. 2013; 107: 267-273https://doi.org/10.1016/j.radonc.2013.05.007
        • Widder J.
        • van der Schaaf A.
        • Lambin P.
        • Marijnen C.A.M.
        • Pignol J.-P.
        • Rasch C.R.
        • et al.
        The quest for evidence for proton therapy: model-based approach and precision medicine.
        Int J Radiat Oncol. 2016; 95: 30-36https://doi.org/10.1016/j.ijrobp.2015.10.004
        • Milano M.T.
        • Constine L.S.
        • Okunieff P.
        Normal tissue tolerance dose metrics for radiation therapy of major organs.
        Semin Radiat Oncol. 2007; 17: 131-140https://doi.org/10.1016/j.semradonc.2006.11.009
        • Eekers
        • Lambrecht D.B.
        • De Witt Nyström M.
        • Swinnen P.
        • Wesseling A.
        • Hoffman F.
        • et al.
        EPTN consensus-based guideline for the tolerance dose per fraction of organs at risk in the brain.
        CancerData. 2018; https://doi.org/10.17195/candat.2018.01.1
        • Hoffmann A.L.
        • Nahum A.E.
        Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.
        Phys Med Biol. 2013; 58: 6897-6914https://doi.org/10.1088/0031-9155/58/19/6897
        • Perkó Z.
        • Bortfeld T.R.
        • Hong T.S.
        • Wolfgang J.
        • Unkelbach J.
        Derivation of mean dose tolerances for new fractionation schemes and treatment modalities.
        Phys Med Biol. 2017; https://doi.org/10.1088/1361-6560/aa9836
      4. Report 83: Prescribing, Recording and Reporting Photon-beam Intensity-Modulated Radiation Therapy (IMRT). J ICRU 2010;10:NP.1-NP. doi:10.1093/jicru/10.1.Report83.

        • Menzel H.-G.
        International Commission on Radiation Units and Measurements.
        J Int Comm Radiat Units Meas. 2014; 14: 1-2https://doi.org/10.1093/jicru/ndx006
        • Cox J.D.
        • Stetz J.
        • Pajak T.F.
        Toxicity criteria of the radiation therapy oncology group (RTOG) and the european organization for research and treatment of cancer (EORTC).
        Pergamon Int J Radi Ati Oncol Biol Phys. 1995; 3: 34-1346
        • Fromme E.K.
        • Eilers K.M.
        • Mori M.
        • Hsieh Y.-C.
        • Beer T.M.
        How accurate is clinician reporting of chemotherapy adverse effects? A comparison with patient-reported symptoms from the quality-of-life questionnaire C30.
        J Clin Oncol. 2004; 22: 3485-3490https://doi.org/10.1200/JCO.2004.03.025
        • Di Maio M.
        • Gallo C.
        • Leighl N.B.
        • Piccirillo M.C.
        • Daniele G.
        • Nuzzo F.
        • et al.
        Symptomatic toxicities experienced during anticancer treatment: agreement between patient and physician reporting in three randomized trials.
        J Clin Oncol. 2015; 33: 910-915https://doi.org/10.1200/JCO.2014.57.9334
      5. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S. Every year, hundreds of thousands of patients worldwide undergo radiotherapy for primary brain tumours and for brain metastases originating from extracranial tumours. Nat Publ Gr 2016;13. doi:10.1038/nrneurol.2016.185.

        • Seibert T.M.
        • Karunamuni R.
        • Kaifi S.
        • Burkeen J.
        • Connor M.
        • Krishnan A.P.
        • et al.
        Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy.
        Int J Radiat Oncol. 2017; 97: 910-918https://doi.org/10.1016/j.ijrobp.2017.01.005
        • Fowler J.F.
        The linear-quadratic formula and progress in fractionated radiotherapy.
        Br J Radiol. 1989; 62: 679-694https://doi.org/10.1259/0007-1285-62-740-679
        • Paganetti H.
        • Niemierko A.
        • Ancukiewicz M.
        • Gerweck L.E.
        • Goitein M.
        • Loeffler J.S.
        • et al.
        Relative biological effectiveness (RBE) values for proton beam therapy.
        Int J Radiat Oncol Biol Phys. 2002; 53: 407-421
        • Paganetti H.
        • van Luijk P.
        Biological considerations when comparing proton therapy with photon therapy.
        Semin Radiat Oncol. 2013; 23: 77-87https://doi.org/10.1016/j.semradonc.2012.11.002
        • Indelicato D.J.
        • Flampouri S.
        • Rotondo R.L.
        • Bradley J.A.
        • Morris C.G.
        • Aldana P.R.
        • et al.
        Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy.
        Acta Oncol (Madr). 2014; 53: 1298-1304https://doi.org/10.3109/0284186X.2014.957414
        • Gunther J.R.
        • Sato M.
        • Chintagumpala M.
        • Ketonen L.
        • Jones J.Y.
        • Allen P.K.
        • et al.
        Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy.
        Int J Radiat Oncol. 2015; 93: 54-63https://doi.org/10.1016/j.ijrobp.2015.05.018
        • Peeler C.R.
        • Mirkovic D.
        • Titt U.
        • Blanchard P.
        • Gunther J.R.
        • Mahajan A.
        • et al.
        Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma.
        Radiother Oncol. 2016; 121: 395-401https://doi.org/10.1016/j.radonc.2016.11.001