ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer


      Radiotherapy (RT) plays a major role in the curative treatment of locally advanced non-small cell lung cancer (NSCLC). Therefore, the ACROP committee was asked by the ESTRO to provide recommendations on target volume delineation for standard clinical scenarios in definitive (chemo)radiotherapy (RT) and adjuvant RT for locally advanced NSCLC. The guidelines given here are a result of the evaluation of a structured questionnaire followed by a consensus discussion, voting and writing procedure within the committee. Hence, we provide advice for methods and time-points of diagnostics and imaging before the start of treatment planning and for the mandatory and optional imaging to be used for planning itself. Concerning target volumes, recommendations are given for GTV delineation of primary tumour and lymph nodes followed by issues related to the delineation of CTVs for definitive and adjuvant radiotherapy. In the context of PTV delineation, recommendations about the management of geometric uncertainties and target motion are given. We further provide our opinions on normal tissue delineation and organisational and responsibility questions in the process of target volume delineation. This guideline intends to contribute to the standardisation and optimisation of the process of RT treatment planning for clinical practice and prospective studies.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Glatzer M.
        • Elicin O.
        • Ramella S.
        • Nestle U.
        • Putora P.M.
        Radio(chemo)therapy in locally advanced nonsmall cell lung cancer.
        Eur Respir Rev. 2016; 25: 65-70
        • Borras J.M.
        • Barton M.
        • Grau C.
        • Corral J.
        • Verhoeven R.
        • Lemmens V.
        • et al.
        The impact of cancer incidence and stage on optimal utilization of radiotherapy: methodology of a population based analysis by the ESTRO-HERO project.
        Radiother Oncol. 2015; 116: 45-50
        • Borras J.M.
        • Lievens Y.
        • Barton M.
        • Corral J.
        • Ferlay J.
        • Bray F.
        • et al.
        How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis.
        Radiother Oncol. 2016; 119: 5-11
        • Atun R.
        • Jaffray D.A.
        • Barton M.B.
        • Bray F.
        • Baumann M.
        • Vikram B.
        • et al.
        Expanding global access to radiotherapy.
        Lancet Oncol. 2015; 16: 1153-1186
        • Konert T.
        • Vogel W.
        • MacManus M.P.
        • Nestle U.
        • Belderbos J.
        • Grégoire V.
        • et al.
        PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014.
        Radiother Oncol. 2015; 116: 27-34
        • Everitt S.J.
        • Ball D.L.
        • Hicks R.J.
        • Callahan J.
        • Plumridge N.
        • Collins M.
        • et al.
        Differential 18F-FDG and 18F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non–small cell lung cancer.
        J Nucl Med. 2014; 55: 1069-1074
        • Geiger G.A.
        • Kim M.B.
        • Xanthopoulos E.P.
        • Pryma D.A.
        • Grover S.
        • Plastaras J.P.
        • et al.
        Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non–small-cell lung cancer.
        Clin Lung Cancer. 2014; 15: 79-85
        • Booth K.
        • Hanna G.G.
        • McGonigle N.
        • McManus K.G.
        • McGuigan J.
        • O’Sullivan J.
        • et al.
        The mediastinal staging accuracy of 18F-Fluorodeoxyglycose Positron Emission Tomography/Computed Tomography in non-small cell lung cancer with variable time intervals to surgery.
        Ulster Med J. 2013; 82: 75
        • De Ruysscher D.
        • Faivre-Finn C.
        • Moeller D.
        • Nestle U.
        • Hurkmans C.W.
        • Le Pechoux C.
        • et al.
        European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer.
        Radiother Oncol. 2017; 124: 1-10
        • Wielpütz M.
        • Kauczor H.-U.
        MRI of the lung: state of the art.
        Diagn Interv Radiol. 2012; 18: 344
        • Sommer G.
        • Stieltjes B.
        Magnetic resonance imaging for staging of non-small-cell lung cancer—technical advances and unmet needs.
        J Thor Dis. 2015; 1098: 7
        • Goossens S.
        • Senny F.
        • Lee J.A.
        • Janssens G.
        • Geets X.
        Assessment of tumor motion reproducibility with audio-visual coaching through successive 4D CT sessions.
        J Appl Clin Med Phys. 2014; 15
        • Chirindel A.
        • Adebahr S.
        • Schuster D.
        • Schimek-Jasch T.
        • Schanne D.H.
        • Nemer U.
        • et al.
        Impact of 4D–18 FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.
        Radiother Oncol. 2015; 115: 335-341
        • Sindoni A.
        • Minutoli F.
        • Pontoriero A.
        • Iatì G.
        • Baldari S.
        • Pergolizzi S.
        Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: Review of the literature.
        Lung Cancer. 2016; 96: 78-86
        • Schaefer A.
        • Vermandel M.
        • Baillet C.
        • Dewalle-Vignion A.
        • Modzelewski R.
        • Vera P.
        • et al.
        Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation.
        Eur J Nucl Med Mol Imaging. 2016; 43: 911-924
        • Peeters S.T.
        • Dooms C.
        • Van Baardwijk A.
        • Dingemans A.-M.C.
        • Martinussen H.
        • Vansteenkiste J.
        • Decaluwé H.
        • De Leyn P.
        • Yserbyt J.
        • Nackaerts K.
        Selective mediastinal node irradiation in non-small cell lung cancer in the IMRT/VMAT era: How to use E (B) US-NA information in addition to PET–CT for delineation?.
        Radiother Oncol. 2016; 120: 273-278
        • Nestle U.
        • Rischke H.C.
        • Eschmann S.M.
        • Holl G.
        • Tosch M.
        • Miederer M.
        • et al.
        Improved inter-observer agreement of an expert review panel in an oncology treatment trial–Insights from a structured interventional process.
        Eur J Cancer. 2015; 51: 2525-2533
        • Steinfort D.P.
        • Siva S.
        • Leong T.L.
        • Rose M.
        • Herath D.
        • Antippa P.
        • et al.
        Systematic endobronchial ultrasound-guided mediastinal staging versus positron emission tomography for comprehensive mediastinal staging in NSCLC before radical radiotherapy of non-small cell lung cancer: a pilot study.
        Medicine. 2016; 95
        • Lynch R.
        • Pitson G.
        • Ball D.
        • Claude L.
        • Sarrut D.
        Computed tomographic atlas for the new international lymph node map for lung cancer: a radiation oncologist perspective.
        Pract Radiat Oncol. 2013; 3: 54-66
        • Giraud P.
        • Antoine M.
        • Larrouy A.
        • Milleron B.
        • Callard P.
        • De Rycke Y.
        • et al.
        Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning.
        Int J Radiat Oncol Biol Phys. 2000; 48: 1015-1024
        • Van Diessen J.N.
        • Chen C.
        • Van Den Heuvel M.M.
        • Belderbos J.S.
        • Sonke J.-J.
        Differential analysis of local and regional failure in locally advanced non-small cell lung cancer patients treated with concurrent chemoradiotherapy.
        Radiother Oncol. 2016; 118: 447-452
        • Yuan S.
        • Meng X.
        • Yu J.
        • Mu D.
        • Chao K.S.
        • Zhang J.
        • et al.
        Determining optimal clinical target volume margins on the basis of microscopic extracapsular extension of metastatic nodes in patients with non-small-cell lung cancer.
        Int J Radiat Oncol Biol Phys. 2007; 67: 727-734
        • Bradley J.D.
        • Paulus R.
        • Komaki R.
        • Masters G.
        • Blumenschein G.
        • Schild S.
        • et al.
        Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study.
        Lancet Oncol. 2015; 16: 187-199
        • Le Péchoux C.
        Role of postoperative radiotherapy in resected non-small cell lung cancer: a reassessment based on new data.
        Oncologist. 2011; 16: 672-681
        • Peulen H.
        • Belderbos J.
        • Guckenberger M.
        • Hope A.
        • Grills I.
        • van Herk M.
        • et al.
        Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy.
        Radiother Oncol. 2015; 114: 361-366
        • Janssens G.
        • Jacques L.
        • de Xivry J.O.
        • Geets X.
        • Macq B.
        Diffeomorphic registration of images with variable contrast enhancement.
        Int J Biomed Imaging. 2011; 2011: 3
        • van Herk M.
        • Remeijer P.
        • Rasch C.
        • Lebesque J.V.
        The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy.
        Int J Radiat Oncol Biol Phys. 2000; 47: 1121-1135
        • Wanet M.
        • Sterpin E.
        • Janssens G.
        • Delor A.
        • Lee J.A.
        • Geets X.
        Validation of the mid-position strategy for lung tumors in helical TomoTherapy.
        Radiother Oncol. 2014; 110: 529-537
        • Wolthaus J.W.
        • Schneider C.
        • Sonke J.-J.
        • van Herk M.
        • Belderbos J.S.
        • Rossi M.M.
        • et al.
        Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1560-1571
        • Wolthaus J.
        • Sonke J.J.
        • Van Herk M.
        • Damen E.
        Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration.
        Med Phys. 2008; 35: 3998-4011
        • Schmidt M.L.
        • Hoffmann L.
        • Knap M.M.
        • Rasmussen T.R.
        • Folkersen B.H.
        • Toftegaard J.
        • et al.
        Cardiac and respiration induced motion of mediastinal lymph node targets in lung cancer patients throughout the radiotherapy treatment course.
        Radiother Oncol. 2016; 121: 52-58
        • Feng M.
        • Moran J.M.
        • Koelling T.
        • Chughtai A.
        • Chan J.L.
        • Freedman L.
        • et al.
        Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer.
        Int J Radiat Oncol Biol Phys. 2011; 79: 10-18
        • Kong F.M.
        • Ritter T.
        • Quint D.J.
        • Senan S.
        • Gaspar L.E.
        • Komaki R.U.
        • et al.
        Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1442-1457
        • Sonke J.-J.
        • Belderbos J.
        Adaptive radiotherapy for lung cancer.
        Semin Radiat Oncol. 2010; : 94-106
        • Vinod S.K.
        • Jameson M.G.
        • Min M.
        • Holloway L.C.
        Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies.
        Radiother Oncol. 2016; 121: 169-179
        • Rasch C.
        • Belderbos J.
        • van Giersbergen A.
        • De Kok I.
        • Laura T.
        • Boer M.
        • et al.
        The influence of a multi-disciplinary meeting for quality assurance on target delineation in radiotherapy treatment preparation.
        Int J Radiat Oncol Biol Phys. 2009; 75: S452-S453
        • Lo A.C.
        • Liu M.
        • Chan E.
        • Lund C.
        • Truong P.T.
        • Loewen S.
        • et al.
        The impact of peer review of volume delineation in stereotactic body radiation therapy planning for primary lung cancer: a multicenter quality assurance study.
        J Thorac Oncol. 2014; 9: 527-533