Advertisement

ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer

Published:February 26, 2018DOI:https://doi.org/10.1016/j.radonc.2018.01.014

      Abstract

      Background and purpose

      Delineation of clinical target volumes (CTVs) remains a weak link in radiation therapy (RT), and large inter-observer variation is seen. Guidelines for target and organs at risk delineation for prostate cancer in the primary setting are scarce. The aim was to develop a delineation guideline obtained by consensus between a broad European group of radiation oncologists.

      Material and methods

      An ESTRO contouring consensus panel consisting of leading radiation oncologists and one radiologist with known subspecialty expertise in prostate cancer was asked to delineate the prostate, seminal vesicles and rectum on co-registered CT and MRI scans. After evaluation of the different contours, literature review and multiple informal discussions by electronic mail a CTV definition was defined and a guide for contouring the CTV of the prostate and the rectum was developed.

      Results

      The panel achieved consensus CTV contouring definitions to be used as guideline for primary RT of localized prostate cancer.

      Conclusion

      The ESTRO consensus on CT/MRI based CTV delineation for primary RT of localized prostate cancer, endorsed by a broad base of the radiation oncology community, is presented to improve consistency and reliability.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Poortmans P.
        • Bossi A.
        • Vandeputte K.
        • et al.
        Guidelines for target definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Therapy Oncology Group.
        Radiotherapy Oncol. 2007; 84: 121-127
        • Sidhom M.A.
        • Kneebone A.B.
        • Lehman M.
        • et al.
        Post-prostatectomy radiation therapy consensus guidelines of the Australian and New Zealand Radiation Oncology Genito-Urinary Group.
        Radiotherapy Oncol. 2008; 88: 10-19
        • Wiltshire K.L.
        • Brock K.K.
        • Haider M.A.
        • et al.
        Anatomical boundaries of the clinical target volume (prostate bed) after radical prostatectomy.
        Int J Radiat Biol Oncol Phys. 2007; 69: 1090-1099
        • Michalski J.M.
        • Lawton C.
        • Naqa E.
        • et al.
        Development of RTOG consensus guidelines for the definition of clinical target volume for postoperative conformal radiation therapy for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2010; 76: 361-368
        • Ost P.
        • De Meerleer G.
        • Vercauteren T.
        • et al.
        Delineation of the postprostatectomy prostate bed using computed tomography: interobserver variability following the EORTC delineation guidelines.
        Int J Radiat Oncol Biol Phys. 2011; 81: e143-e149
        • Boehmer D.
        • Maignon P.
        • Poortmans P.
        • et al.
        Guidelines for primary radiotherapy of patients with prostate cancer.
        Radiot Oncol. 2006; : 259-269
        • Nakamura K.
        • Shioyama Y.
        • Tokumaru S.
        • et al.
        Variation of clinical target volume definition among Japanese radiation oncologists in external beam radiotherapy for prostate cancer.
        Jpn J Clin Oncol. 2008; 38: 275-280
        • Moeckli R.
        • Sozzi W.
        • Mirimanoff R.
        • et al.
        Physical considerations on discrepancies in target volume delineation.
        Z Med Phys. 2009; 19: 224-235
        • Rasch C.
        • Barillot I.
        • Remeijer P.
        • et al.
        Definition of the prostate in CT and MRI: a multi-observer study.
        Int J Radiat Oncol Biol Phys. 1999; 43: 57-66
        • Sander L.
        • Langkilde N.
        • Holmberg M.
        • Carl J.
        MRI target delineation may reduce long-term toxicity after prostate radiotherapy.
        Acta Oncol. 2014; 53: 809-814
        • Hentschel B.
        • Oehler W.
        • Straus D.
        • et al.
        CT-MRI image fusion in IMRT planning for prostate cancer.
        Strahlenther und Onkol. 2011; 187: 183-190
        • Peeters S.T.
        • Lebesque J.V.
        • Heemsbergen W.D.
        • et al.
        Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2006; 64: 1151-1161
        • Li X.
        • Gao X.
        • Guo X.
        • Li Y.
        • Wang X.
        Using CT imaging to delineate the prostatic apex for radiation treatment planning.
        Chin J Cancer. 2010; 29: 914-922
        • McNeal J.
        Normal anatomy of the prostate and changes in benign prostatic hypertrophy and carcinoma.
        Semin Ultrasound CT MR. 1988; 9: 329-334
        • Epstein J.I.
        • Egevad L.
        • Amin M.B.
        • et al.
        The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system.
        Am J Surg Pathol. 2016; 40: 244-252
        • D’amico A.V.
        • Whittington R.
        • Malkowicz B.
        • et al.
        Biochemical outcome after radical prostatectomy, external beam radiation therapy or interstitial radiation therapy for clinically localized prostate cancer.
        JAMA. 1998; 280: 969-974
        • Lieberfarb M.E.
        • Schultz D.
        • Whittington R.
        • et al.
        Using PSA, biopsy, Gleason score, clinical stage, and the percentage of positive biopsies to identify optimal candidates for prostate-only radiation therapy.
        Int J Radiat Oncol Biol Phys. 2002; 53: 898-903
        • Qi X.
        • Asaumi J.
        • Zhang M.
        • et al.
        Optimal contouring of seminal vesicle for definitive radiotherapy of localized prostate cancer: comparison between EORTC prostate cancer radiotherapy guideline, RTOG0815 protocol and actual anatomy.
        Radiation Oncol. 2014; 9: 288-295
        • Chao K.
        • Goldstein N.
        • Yan D.
        • et al.
        Clinicopathologic analysis of extracapsular extension in prostate cancer: should the clinical target volume be expanded posterolaterally to account for microscopic extension?.
        Int J Radiat Oncol Biol Phys. 2006; 4: 999-1007
        • Teh B.
        • Bastasch M.
        • Wheeler T.
        • et al.
        IMRT for prostate cancer: defining target volume based on correlated pathologic volume disease.
        Int J Radiat Oncol Biol Phys. 2003; 56: 184-191
        • Salembier C.
        • Lavagnini P.
        • Nickers P.
        • et al.
        Tumour and target volumes in permanent prostate brachytherapy: a supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy.
        Radiother Oncol. 2007; 83: 3-10
        • Hoskin P.J.
        • Colombo A.
        • Henry A.
        • et al.
        GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update.
        Radiother Oncol. 2013; 107: 325-332
        • Barentsz J.O.
        • Weinreb J.C.
        • Verma S.
        • et al.
        Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use.
        Eur Urol. 2016; 69: 16-40
        • Hanvey S.
        • Sadozye A.
        • McJury M.
        • Glegg M.
        • Foster J.
        The influence of MRI scan position on image registration accuracy, target delineation and calculated dose in prostatic radiotherapy.
        Br J Radiol. 2012; 85: e1256-e1262
        • Parker C.C.
        • Damyanovich A.
        • Haycocks T.
        • Haider M.
        • Bayley A.
        • Catton C.N.
        Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration.
        Radiother Oncol. 2003; 66: 217-224
        • Gao Z.
        • Wilkins D.
        • Eapen L.
        • et al.
        A study of prostate delineation referenced against a gold standard created from the visible human data.
        Radiother Oncol. 2007; 85: 239-246
        • Fiorino C.
        • Reni M.
        • Bolognesi A.
        • Cattaneo G.M.
        • Calandrino R.
        Intra- and inter-observer variability in contouring prostate and seminal vesicles: Implications for conformal treatment planning.
        Radiother Oncol. 1998; 47: 285-292
        • Khoo E.
        • Schick K.
        • Plank A.
        • et al.
        Prostate contouring variation: can it be fixed?.
        Int J Radiat Oncol Biol Phys. 2012; 82: 1923-1929
        • Szumacher E.
        • Harnett N.
        • Warner S.
        • et al.
        Effectiveness of educational intervention on the congruence of prostate and rectal contouring as compared with a gold standard in three-dimensional radiotherapy for prostate.
        Int J Radiat Oncol Biol Phys. 2010; 76: 379-385
        • Doemer A.
        • Chetty I.
        • Glide-Hurst C.
        • et al.
        Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients.
        Radiation Oncol. 2015; 10: 37-46
        • Debois M.
        • Oyen R.
        • Maes F.
        • et al.
        The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer.
        Int J Radiat Oncol Biol Phys. 1999; 45: 857-865
        • De Brabandere M.
        • Hoskin P.
        • Haustermans K.
        • Van den Heuvel F.
        • Siebert F.A.
        Prostate post-implant dosimetry: interobserver variability in seed localisation, contouring and fusion.
        Radiot Oncol. 2012; 104: 192-198
        • DeRooij M.
        • Hamoen E.H.
        • Witjes J.A.
        • Barentsz J.O.
        • Rovers M.M.
        Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis.
        Eur Urol. 2016; 70: 233-245
        • Kestin L.L.
        • Goldstein N.S.
        • Vicini F.A.
        • Yan D.
        • Korman H.J.
        • Martinez A.A.
        Treatment of prostate cancer with radiotherapy: should he entire seminal vesicles be included in the clinical target volume?.
        Int J Radiot Oncol Biol Phys. 2002; 54: 686-697
        • Al-Abany M.
        • Helgason A.R.
        • Cronqvist A.K.
        • et al.
        Toward a definition of a threshold for harmless doses to the anal-sphincter region and the rectum.
        Int J Radiat Oncol Biol Phys. 2005; 15: 1035-1044
        • Pucar D.
        • Hricak H.
        • Shukla-Dave A.
        • et al.
        Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence.
        Int J Radiat Oncol Biol. 2007; 69: 62-69
        • Cellini N.
        • Morganti A.G.
        • Mattiucci G.C.
        • et al.
        Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning.
        Int J Radiat Oncol Biol Phys. 2002; 53: 595-599
        • Teste C.
        • Schiavina R.
        • Lodi R.
        • et al.
        Prostate cancer: sextant localization with MR imaging, MR spectroscopy and 11C-choline PET/CT.
        Radiology. 2007; 244: 797-806
        • Mena E.
        • Turkey B.
        • Mani H.
        • et al.
        11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation.
        J Nucl Med. 2012; 53: 538-545
        • Zamboglou C.
        • Sachpazidis I.
        • Koubar K.
        • et al.
        Evaluation of intensity modulated radiation therapy dose painting for localized prostate cancer using 68Ga-HBED-CC PSMA PET/CT: a planning study based on histopathology reference.
        Radiother Oncol. 2017; 123: 472-477
        • Fütterer J.
        • Heijmink S.
        • Schennen T.
        • et al.
        Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging.
        Radiology. 2006; 241: 449-458
        • Groenendael G.
        • Borren A.
        • Moman M.
        • et al.
        Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone.
        Int J Radiat Oncol Biol Phys. 2012; 82: 537-544
        • Lips I.M.
        • van der Heide U.A.
        • Haustermans K.
        • et al.
        Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial.
        Trials. 2011; 12: 255
        • Greer P.
        • Dowling J.
        • Lambert J.
        • et al.
        A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer.
        AMJ. 2011; 194: S24-S27