Radiosensitivity and stem cells| Volume 124, ISSUE 3, P448-454, September 2017

Download started.


Role of glial-cell-derived neurotrophic factor in salivary gland stem cell response to irradiation


      Background and purpose

      Recently, stem cell therapy has been proposed to allow regeneration of radiation damaged salivary glands. It has been suggested that glial-cell-derived neurotrophic factor (GDNF) promotes survival of mice salivary gland stem cells (mSGSCs). The purpose of this study was to investigate the role of GDNF in the modulation of mSGSC response to irradiation and subsequent salivary gland regeneration.


      Salivary gland sphere derived cells of Gdnf hypermorphic (Gdnfwt/hyper) and wild type mice (Gdnfwt/wt) were irradiated (IR) with γ-rays at 0, 1, 2, 4 and 8 Gy. mSGSC survival and stemness were assessed by calculating surviving fraction measured as post-IR sphere forming potential and population doublings. Flow cytometry was used to determine the CD24hi/CD29hi stem cell (SC) population. QPCR and immunofluorescence was used to detect GDNF expression.


      The IR survival responses of mSGSCs were similar albeit resulted in larger spheres and an increased cell number in the Gdnfwt/hyper compared to Gdnfwt/wt group. Indeed, mSGSC of Gdnfwt/hyper mice showed high sphere forming efficiency upon replating. Interestingly, GDNF expression co-localized with receptor tyrosine kinase (RET) and was upregulated after IR in vitro and in vivo, but normalized in vivo after mSGSC transplantation.


      GDNF does not protect mSGSCs against irradiation but seems to promote mSGSCs proliferation through the GDNF-RET signaling pathway. Post-transplantation stimulation of GDNF/RET pathway may enhance the regenerative potential of mSGSCs.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Vissink A.
        • Burlage F.R.
        • Spijkervet F.K.
        • Jansma J.
        • Coppes R.P.
        Prevention and treatment of the consequences of head and neck radiotherapy.
        Crit Rev Oral Biol Med. 2003; 14: 213-225
        • Swick A.
        • Kimple R.J.
        Wetting the whistle: neurotropic factor improves salivary function.
        J Clin Invest. 2014; 124: 3282-3284
        • Nagle P.W.
        • Hosper N.A.
        • Ploeg E.M.
        • et al.
        The in vitro response of tissue stem cells to irradiation with different linear energy transfers.
        Int J Radiat Oncol Biol Phys. 2016; 95: 103-111
        • Dirix P.
        • Nuyts S.
        Evidence-based organ-sparing radiotherapy in head and neck cancer.
        Lancet Oncol. 2010; 11: 85-91
        • Kolahi J.
        • Mansourian M.
        Autotransplantation of cryopreserved minor salivary glands: a new approach for management of radiation-induced xerostomia.
        Med Hypotheses. 2010; 74: 29-30
        • Jha N.
        • Seikaly H.
        • Harris J.
        • et al.
        Prevention of radiation induced xerostomia by surgical transfer of submandibular salivary gland into the submental space.
        Radiother Oncol. 2003; 66: 283-289
        • Haddad R.
        • Sonis S.
        • Posner M.
        • et al.
        Randomized phase 2 study of concomitant chemoradiotherapy using weekly carboplatin/paclitaxel with or without daily subcutaneous amifostine in patients with locally advanced head and neck cancer.
        Cancer. 2009; 115: 4514-4523
        • Jellema A.P.
        • Slotman B.J.
        • Muller M.J.
        • et al.
        Radiotherapy alone, versus radiotherapy with amifostine 3 times weekly, versus radiotherapy with amifostine 5 times weekly: a prospective randomized study in squamous cell head and neck cancer.
        Cancer. 2006; 107: 544-553
        • Davies A.N.
        • Thompson J.
        Parasympathomimetic drugs for the treatment of salivary gland dysfunction due to radiotherapy.
        Cochrane Database Syst Rev. 2015; 10 (doi: CD003782)CD003782
        • Burlage F.R.
        • Roesink J.M.
        • Kampinga H.H.
        • et al.
        Protection of salivary function by concomitant pilocarpine during radiotherapy: a double-blind, randomized, placebo-controlled study.
        Int J Radiat Oncol Biol Phys. 2008; 70: 14-22
        • Nanduri L.S.
        • Maimets M.
        • Pringle S.A.
        • van der Zwaag M.
        • van Os R.P.
        • Coppes R.P.
        Regeneration of irradiated salivary glands with stem cell marker expressing cells.
        Radiother Oncol. 2011; 99: 367-372
        • Xiao N.
        • Lin Y.
        • Cao H.
        • et al.
        Neurotrophic factor GDNF promotes survival of salivary stem cells.
        J Clin Invest. 2014; 124: 3364-3377
        • Maimets M.
        • Rocchi C.
        • Bron R.
        • et al.
        Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals.
        Stem Cell Rep. 2016; 6: 150-162
        • Pringle S.
        • Maimets M.
        • van der Zwaag M.
        • et al.
        Human salivary gland stem cells functionally restore radiation damaged salivary glands.
        Stem Cells. 2016; 34: 640-652
        • Blanpain C.
        • Horsley V.
        • Fuchs E.
        Epithelial stem cells: turning over new leaves.
        Cell. 2007; 128: 445-458
        • Hai B.
        • Yang Z.
        • Millar S.E.
        • et al.
        Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland.
        Stem Cells Dev. 2010; 19: 1793-1801
        • Fiaschi M.
        • Kolterud A.
        • Nilsson M.
        • Toftgard R.
        • Rozell B.
        Targeted expression of GLI1 in the salivary glands results in an altered differentiation program and hyperplasia.
        Am J Pathol. 2011; 179: 2569-2579
        • Dang H.
        • Lin A.L.
        • Zhang B.
        • Zhang H.M.
        • Katz M.S.
        • Yeh C.K.
        Role for Notch signaling in salivary acinar cell growth and differentiation.
        Dev Dyn. 2009; 238: 724-731
        • Hai B.
        • Yang Z.
        • Shangguan L.
        • Zhao Y.
        • Boyer A.
        • Liu F.
        Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands.
        Int J Radiat Oncol Biol Phys. 2012; 83: e109-16
        • Ibanez C.F.
        Emerging themes in structural biology of neurotrophic factors.
        Trends Neurosci. 1998; 21: 438-444
        • Airaksinen M.S.
        • Saarma M.
        The GDNF family: signalling, biological functions and therapeutic value.
        Nat Rev Neurosci. 2002; 3: 383-394
        • Costantini F.
        • Shakya R.
        GDNF/Ret signaling and the development of the kidney.
        Bioessays. 2006; 28: 117-127
        • Kumar A.
        • Kopra J.
        • Varendi K.
        • et al.
        GDNF overexpression from the native locus reveals its role in the nigrostriatal dopaminergic system function.
        PLoS Genet. 2015; 11: e1005710
        • Nanduri L.S.
        • Baanstra M.
        • Faber H.
        • et al.
        Purification and ex vivo expansion of fully functional salivary gland stem cells.
        Stem Cell Rep. 2014; 3: 957-964
        • Lombaert I.M.
        • Brunsting J.F.
        • Wierenga P.K.
        • et al.
        Rescue of salivary gland function after stem cell transplantation in irradiated glands.
        PLoS One. 2008; 3: e2063
        • Pringle S.
        • Nanduri L.S.
        • van der Zwaag M.
        • van Os R.
        • Coppes R.P.
        Isolation of mouse salivary gland stem cells.
        J Vis Exp. 2011; 48 (pii: 2484. doi:10.3791/2484)
        • Sidorova Y.A.
        • Matlik K.
        • Paveliev M.
        • et al.
        Persephin signaling through GFRalpha1: the potential for the treatment of Parkinson's disease.
        Mol Cell Neurosci. 2010; 44: 223-232
        • Kopra J.
        • Vilenius C.
        • Grealish S.
        • et al.
        GDNF is not required for catecholaminergic neuron survival in vivo.
        Nat Neurosci. 2015; 18: 319-322
        • Venkata Narayanan I.
        • Paulsen M.T.
        • Bedi K.
        • et al.
        Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53.
        Sci Rep. 2017; 7: 43598
        • Fonseca-Pereira D.
        • Arroz-Madeira S.
        • Rodrigues-Campos M.
        • et al.
        The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function.
        Nature. 2014; 514: 98-101
        • Li L.
        • Chen H.
        • Wang M.
        • et al.
        NCAM-140 translocation into lipid rafts mediates the neuroprotective effects of GDNF.
        Mol Neurobiol. 2017; 54: 2739-2751
        • McAlhany Jr, R.E.
        • West J.R.
        • Miranda R.C.
        Glial-derived neurotrophic factor (GDNF) prevents ethanol-induced apoptosis and JUN kinase phosphorylation.
        Brain Res Dev Brain Res. 2000; 119: 209-216
        • Villegas S.N.
        • Njaine B.
        • Linden R.
        • Carri N.G.
        Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways.
        Brain Res Bull. 2006; 71: 116-126
        • Drinkut A.
        • Tillack K.
        • Meka D.P.
        • Schulz J.B.
        • Kugler S.
        • Kramer E.R.
        Ret is essential to mediate GDNF's neuroprotective and neuroregenerative effect in a Parkinson disease mouse model.
        Cell Death Dis. 2016; 7: e2359