Radiosensitization by gold nanoparticles: Will they ever make it to the clinic?

  • Lei Cui
    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
    Search for articles by this author
  • Sohyoung Her
    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
    Search for articles by this author
  • Gerben R. Borst
    Department of Radiation Oncology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
    Search for articles by this author
  • Robert G. Bristow
    Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada

    Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

    STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Search for articles by this author
  • David A. Jaffray
    Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada

    STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

    TECHNA Institute and Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

    Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

    Techna Institute, University Health Network, Toronto, Canada

    Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
    Search for articles by this author
  • Christine Allen
    Corresponding author at: Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada

    STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

    Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
    Search for articles by this author


      The utilization of gold nanoparticles (AuNPs) as radiosensitizers has shown great promise in pre-clinical research. In the current review, the physical, chemical, and biological pathways via which AuNPs enhance the effects of radiation are presented and discussed. In particular, the impact of AuNPs on the 5 Rs in radiobiology, namely repair, reoxygenation, redistribution, repopulation, and intrinsic radiosensitivity, which determine the extent of radiation enhancement effects are elucidated. Key findings from previous studies are outlined. In addition, crucial parameters including the physicochemical properties of AuNPs, route of administration, dosing schedule of AuNPs and irradiation, as well as type of radiation therapy, are highlighted; the optimal selection and combination of these parameters enable the achievement of a greater therapeutic window for AuNP sensitized radiotherapy. Future directions are put forward as a means to provide guidelines for successful translation of AuNPs to clinical applications as radiosensitizers.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Joiner M. basic clinical radiobiology. Hodder Arnold, London2009: 1-10
        • Thariat J.
        • et al.
        Past, present, and future of radiotherapy for the benefit of patients.
        Nat Rev Clin Oncol. 2013; 10: 52-60
        • Delaney G.
        • et al.
        The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines.
        Cancer. 2005; 104: 1129-1137
        • Delaney G.
        • Barton M.
        • Jacob S.
        Estimation of an optimal radiotherapy utilization rate for breast carcinoma: a review of the evidence.
        Cancer. 2003; 98: 1977-1986
        • Stone H.B.
        • et al.
        Effects of radiation on normal tissue: consequences and mechanisms.
        Lancet Oncol. 2003; 4: 529-536
        • Liauw S.L.
        • Connell P.P.
        • Weichselbaum R.R.
        New paradigms and future challenges in radiation oncology: an update of biological targets and technology.
        Sci Transl Med. 2013; 5: 173sr2
        • Meacham C.E.
        • Morrison S.J.
        Tumour heterogeneity and cancer cell plasticity.
        Nature. 2013; 501: 328-337
        • Burrell R.A.
        • et al.
        The causes and consequences of genetic heterogeneity in cancer evolution.
        Nature. 2013; 501: 338-345
        • Junttila M.R.
        • de Sauvage F.J.
        Influence of tumour micro-environment heterogeneity on therapeutic response.
        Nature. 2013; 501: 346-354
        • Baskar R.
        • et al.
        Cancer and radiation therapy: current advances and future directions.
        Int J Med Sci. 2012; 9: 193-199
        • Seiwert T.Y.
        • Salama J.K.
        • Vokes E.E.
        The concurrent chemoradiation paradigm–general principles.
        Nat Clin Pract Oncol. 2007; 4: 86-100
        • Steel G.G.
        • Peckham M.J.
        Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity.
        Int J Radiat Oncol Biol Phys. 1979; 5: 85-91
        • Wardman P.
        Chemical radiosensitizers for use in radiotherapy.
        Clin Oncol. 2007; 19: 397-417
        • Bindhu J.
        • Anupama G.
        Radiosensitization: the new dogma in cancer treatment.
        Austral – Asian J Cancer. 2005; 4: 241-250
      2. Boag J. The time scale in Radiobiology, in 12th Failla memorial lecture. In: Nygaard OF, Adler HI, Sinclair WK (eds) Radiation research, in Proceedings of the 5th international Congress of Radiation Research. 1975: New York.

        • Steel G.G.
        • McMillan T.J.
        • Peacock J.H.
        The 5Rs of radiobiology.
        Int J Radiat Biol. 1989; 56: 1045-1048
        • Harrington K.
        • Jankowska P.
        • Hingorani M.
        Molecular biology for the radiation oncologist: the 5Rs of radiobiology meet the hallmarks of cancer.
        Clin Oncol (R Coll Radiol). 2007; 19: 561-571
        • Pajonk F.
        • Vlashi E.
        • McBride W.H.
        Radiation resistance of cancer stem cells: the 4 R's of radiobiology revisited.
        Stem Cells. 2010; 28: 639-648
        • Daniel M.C.
        • Astruc D.
        Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.
        Chem Rev. 2004; 104: 293-346
        • Sperling R.A.
        • et al.
        Biological applications of gold nanoparticles.
        Chem Soc Rev. 2008; 37: 1896-1908
        • Dykman L.A.
        • Khlebtsov N.G.
        Gold nanoparticles in biology and medicine: recent advances and prospects.
        Acta Naturae. 2011; 3: 34-55
      3. Matijevic E. Fine particles in medicine and pharmacy. 12 ed. Springer, New York2011
        • Coleman C.N.
        • Mitchell J.B.
        Clinical radiosensitization: why it does and does not work.
        J Clin Oncol. 1999; 17: 1-3
        • Matsudaira H.
        • Ueno A.M.
        • Furuno I.
        Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to gamma rays.
        Radiat Res. 1980; 84: 144-148
        • Taupin F.
        • et al.
        Gadolinium nanoparticles and contrast agent as radiation sensitizers.
        Phys Med Biol. 2015; 60: 4449-4464
        • Biston M.C.
        • et al.
        Cure of Fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-rays.
        Cancer Res. 2004; 64: 2317-2323
        • Hainfeld J.F.
        • Slatkin D.
        • Smilowitz H.M.
        The use of gold nanoparticles to enhance radiotherapy in mice.
        Phys Med Biol. 2004; 49: 309-315
        • Kong T.
        • et al.
        Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles.
        Small. 2008; 4: 1537-1543
        • Liu C.J.
        • et al.
        Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification.
        Nanotechnology. 2008; 19: 295104
        • Zhang X.
        • et al.
        Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles.
        Clin Invest Med. 2008; 31: E160-E167
        • Rahman W.N.
        • et al.
        Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy.
        Nanomedicine. 2009; 5: 136-142
        • Roa W.
        • et al.
        Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle.
        Nanotechnology. 2009; 20: 375101
        • Butterworth K.T.
        • et al.
        Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy.
        Nanotechnology. 2010; 21: 295101
        • Chattopadhyay N.
        • et al.
        Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer.
        Mol Pharm. 2010; 7: 2194-2206
        • Chithrani B.D.
        • Jelveh S.
        • Jalai F.
        • van Prooijen M.
        • Allen C.
        • Bristow R.G.
        • Hill R.P.
        • Jaffray D.A.
        Gold nanoparticles as radiation sensitizers in cancer therapy.
        Radiat Res. 2010; 173: 719-728
        • Liu C.J.
        • et al.
        Enhancement of cell radiation sensitivity by pegylated gold nanoparticles.
        Phys Med Biol. 2010; 55: 931-945
        • Geng F.
        • et al.
        Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer.
        Nanotechnology. 2011; 22: 285101
        • Jain S.
        • et al.
        Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies.
        Int J Radiat Oncol Biol Phys. 2011; 79: 531-539
        • Ngwa W.
        • et al.
        In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds.
        Nanomedicine. 2013; 9: 25-27
        • Xu W.
        • et al.
        RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating alpha(v)beta(3) expression.
        Int J Nanomedicine. 2012; 7: 915-924
        • Jeremic B.
        • Aguerri A.R.
        • Filipovic N.
        Radiosensitization by gold nanoparticles.
        Clin Transl Oncol. 2013; 15: 593-601
        • Cui L.
        • et al.
        Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells.
        Radiat Res. 2014; 182: 475-488
        • Xu W.
        • Luo T.
        • Pang B.
        • Li P.
        • Zhou C.
        • Huang P.
        • Zhang C.
        • Ren Q.
        • Hu W.
        • Fu S.
        The radiosensitization of melanoma cells by gold nanorods irradiated with MV X-ray. Nano.
        Biomed Eng. 2012; 4: 6-11
        • Taggart L.E.
        • et al.
        The role of mitochondrial function in gold nanoparticle mediated radiosensitisation.
        Cancer Nanotechnol. 2014; 5: 5
        • Jain S.
        • et al.
        Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions.
        Radiother Oncol. 2014; 110: 342-347
        • Polf J.C.
        • et al.
        Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles.
        Appl Phys Lett. 2011; 98: 193702
        • Herold D.M.
        • et al.
        Gold microspheres: a selective technique for producing biologically effective dose enhancement.
        Int J Radiat Biol. 2000; 76: 1357-1364
        • Chang M.Y.
        • et al.
        Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice.
        Cancer Sci. 2008; 99: 1479-1484
        • Khan M.K.
        • et al.
        Fabrication of 198Au0 radioactive composite nanodevices and their use for nanobrachytherapy.
        Nanomedicine. 2008; 4: 57-69
        • Hebert E.M.
        • et al.
        Preferential tumour accumulation of gold nanoparticles, visualised by Magnetic Resonance Imaging: radiosensitisation studies in vivo and in vitro.
        Int J Radiat Biol. 2010; 86: 692-700
        • Chanda N.
        • et al.
        Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice.
        Nanomedicine. 2010; 6: 201-209
        • Zhang X.D.
        • et al.
        Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy.
        Biomaterials. 2012; 33: 6408-6419
        • Kim J.K.
        • et al.
        Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles.
        Phys Med Biol. 2012; 57: 8309-8323
        • Chattopadhyay N.
        • et al.
        Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation.
        Breast Cancer Res Treat. 2013; 137: 81-91
        • Hainfeld J.F.
        • et al.
        Gold nanoparticle imaging and radiotherapy of brain tumors in mice.
        Nanomedicine (Lond). 2013; 8: 1601-1609
        • Joh D.Y.
        • et al.
        Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.
        PLoS One. 2013; 8: e62425
        • Lin F.S.
        • et al.
        Radiotherapy of the excretable radioactive gold nanocomposite with intratumoral injection.
        Int J Mater Mech Manuf. 2013; 1: 265-268
        • Al Zaki A.
        • et al.
        Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization.
        ACS Nano. 2014; 8: 104-112
        • Wolfe T.
        • et al.
        Proton therapy enhanced by tumor-targeting gold nanoparticles: a pilot in vivo experiment at the proton therapy center at MD Anderson Cancer Center.
        Med Phys. 2014; 41: 518
        • Wolfe T.
        • et al.
        Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo.
        Nanomedicine. 2015; 11: 1277-1283
        • Butterworth K.T.
        • et al.
        Physical basis and biological mechanisms of gold nanoparticle radiosensitization.
        Nanoscale. 2012; 4: 4830-4838
      4. Attix F.H. Introduction to radiological physics and radiation dosimetry. WILEY-VCH Verlag GmbH & Co. KGaA, New York1986
        • Carter J.D.
        • et al.
        Nanoscale energy deposition by X-ray absorbing nanostructures.
        J Phys Chem B. 2007; 111: 11622-11625
        • Mesbahi A.
        A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer.
        Rep Pract Oncol Radiother. 2010; 15: 176-180
        • Hockel M.
        • Vaupel P.
        Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects.
        J Natl Cancer Inst. 2001; 93: 266-276
        • Overgaard J.
        Hypoxic radiosensitization: adored and ignored.
        J Clin Oncol. 2007; 25: 4066-4074
        • Wilson W.R.
        • Hay M.P.
        Targeting hypoxia in cancer therapy.
        Nat Rev Cancer. 2011; 11: 393-410
        • Nel A.
        • et al.
        Toxic potential of materials at the nanolevel.
        Science. 2006; 311: 622-627
        • Hvolbaek B.
        • et al.
        Catalytic activity of Au nanoparticles.
        Nano Today. 2007; 2: 14-18
        • Misawa M.
        • Takahashi J.
        Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations.
        Nanomedicine. 2011; 7: 604-614
        • Cheng N.N.
        • et al.
        Chemical enhancement by nanomaterials under X-ray irradiation.
        J Am Chem Soc. 2012; 134: 1950-1953
        • Zheng Y.
        • et al.
        Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons.
        Radiat Res. 2008; 169: 19-27
        • Yao X.
        • et al.
        Chemical Radiosensitivity of DNA Induced by Gold Nanoparticles.
        J Biomed Nanotechnol. 2015; 11: 478-485
        • Her S.
        • Jaffray D.A.
        • Allen C.
        Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements.
        Adv Drug Deliv Rev. 2015;
        • Kim J.J.
        • Tannock I.F.
        Repopulation of cancer cells during therapy: an important cause of treatment failure.
        Nat Rev Cancer. 2005; 5: 516-525
        • Brown J.M.
        • Carlson D.J.
        • Brenner D.J.
        The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved?.
        Int J Radiat Oncol Biol Phys. 2014; 88: 254-262
        • Ma B.B.
        • et al.
        Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.
        J Clin Oncol. 2003; 21: 2760-2776
        • Xia T.
        • et al.
        Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.
        Nano Lett. 2006; 6: 1794-1807
        • Cui L.
        • et al.
        Neoplastic cell response to tiopronin-coated gold nanoparticles.
        Nanomedicine. 2013; 9: 264-273
        • Pan Y.
        • et al.
        Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage.
        Small. 2009; 5: 2067-2076
        • Mroz R.M.
        • et al.
        Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways.
        Eur Respir J. 2008; 31: 241-251
        • Rim K.T.
        • Song S.W.
        • Kim H.Y.
        Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review.
        Saf Health Work. 2013; 4: 177-186
        • Berbeco R.I.
        • et al.
        DNA damage enhancement from gold nanoparticles for clinical MV photon beams.
        Radiat Res. 2012; 178: 604-608
        • Kvols L.K.
        Radiation sensitizers: a selective review of molecules targeting DNA and non-DNA targets.
        J Nucl Med. 2005; 46: 187S-190S
        • Kievit F.M.
        • et al.
        Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to gamma-irradiation.
        Mol Oncol. 2015; 9: 1071-1080
        • Jugan M.L.
        • et al.
        Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells.
        Nanotoxicology. 2012; 6: 501-513
        • Wojewodzka M.
        • et al.
        Treatment with silver nanoparticlesdelays repair of X-ray induced DNA damage in HepG2 cells.
        NUKLEONIKA. 2011; 56: 29-33
        • Ogawa Y.
        • et al.
        Apoptotic-resistance of the human osteosarcoma cell line HS-Os-1 to irradiation is converted to apoptotic-susceptibility by hydrogen peroxide: a potent role of hydrogen peroxide as a new radiosensitizer.
        Int J Mol Med. 2003; 12: 845-850
        • Chan N.
        • et al.
        Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance.
        Cancer Res. 2008; 68: 605-614
        • Potiron V.A.
        • et al.
        Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer.
        PLoS One. 2013; 8: e84076
        • Milas L.
        • et al.
        Tumor reoxygenation as a mechanism of taxol-induced enhancement of tumor radioresponse.
        Acta Oncol. 1995; 34: 409-412
        • Krause M.
        • et al.
        Decreased repopulation as well as increased reoxygenation contribute to the improvement in local control after targeting of the EGFR by C225 during fractionated irradiation.
        Radiother Oncol. 2005; 76: 162-167
        • Grana X.
        • Reddy E.P.
        Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs).
        Oncogene. 1995; 11: 211-219
        • Kastan M.B.
        • Bartek J.
        Cell-cycle checkpoints and cancer.
        Nature. 2004; 432: 316-323
        • Pawlik T.M.
        • Keyomarsi K.
        Role of cell cycle in mediating sensitivity to radiotherapy.
        Int J Radiat Oncol Biol Phys. 2004; 59: 928-942
        • Withers H.R.
        Cell cycle redistribution as a factor in multifraction irradiation.
        Radiology. 1975; 114: 199-202
        • Milas L.
        • Milas M.M.
        • Mason K.A.
        Combination of taxanes with radiation: preclinical studies.
        Semin Radiat Oncol. 1999; 9: 12-26
        • AshaRani P.V.
        • et al.
        Cytotoxicity and genotoxicity of silver nanoparticles in human cells.
        ACS Nano. 2009; 3: 279-290
        • Kansara K.
        • et al.
        TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.
        Environ Mol Mutagen. 2015; 56: 204-217
        • Brown J.M.
        The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F Cain Memorial Award lecture.
        Cancer Res. 1999; 59: 5863-5870
        • Kalishwaralal K.
        • et al.
        Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via Src dependent pathway in retinal endothelial cells.
        Angiogenesis. 2011; 14: 29-45
        • Bhattacharya R.
        • Mukherjee P.
        • Xiong Z.
        • Atala A.
        • Soker S.
        • Mukhopadhyay D.
        Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells.
        Nano Lett. 2004; 4: 2479-2481
        • Pan Y.
        • et al.
        Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway.
        Biomed Res Int. 2014; 2014: 418624
        • Mukherjee P.
        • et al.
        Antiangiogenic properties of gold nanoparticles.
        Clin Cancer Res. 2005; 11: 3530-3534
        • Kim J.A.
        • et al.
        Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population.
        Nat Nanotechnol. 2012; 7: 62-68
        • Chithrani D.B.
        • et al.
        Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier.
        Nanomedicine. 2010; 6: 161-169
        • Fertil B.
        • Malaise E.P.
        Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves.
        Int J Radiat Oncol Biol Phys. 1985; 11: 1699-1707
        • West C.M.
        • et al.
        Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix.
        Br J Cancer. 1993; 68: 819-823
        • West C.M.
        • et al.
        The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix.
        Br J Cancer. 1997; 76: 1184-1190
        • Petersen C.
        • et al.
        Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor.
        Clin Cancer Res. 2000; 6: 2513-2520
        • Mkandawire M.M.
        • et al.
        Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles.
        Nanoscale. 2015; 7: 10634-10640
        • Selim M.E.
        • Hendi A.A.
        Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells.
        Asian Pac J Cancer Prev. 2012; 13: 1617-1620
        • Lan M.Y.
        • et al.
        Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells.
        Auris Nasus Larynx. 2013; 40: 563-568
        • Kang B.
        • Mackey M.A.
        • El-Sayed M.A.
        Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis.
        J Am Chem Soc. 2010; 132: 1517-1519
        • Zhivotovsky B.
        • Joseph B.
        • Orrenius S.
        Tumor radiosensitivity and apoptosis.
        Exp Cell Res. 1999; 248: 10-17
        • Brown J.M.
        • Wouters B.G.
        Apoptosis, p53, and tumor cell sensitivity to anticancer agents.
        Cancer Res. 1999; 59: 1391-1399
        • Marill J.
        • et al.
        Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?.
        Radiat Oncol. 2014; 9: 150
        • Cho S.H.
        Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study.
        Phys. Med. Biol. 2005; 50: 163-173
        • Cho S.H.
        • Jones B.L.
        • Krishnan S.
        The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.
        Phys Med Biol. 2009; 54: 4889-4905
        • Ghasemi M.
        • et al.
        Dosimetric studies of micropencil X-ray beam interacting with labelled tissues by Au and Gd agents using Geant4.
        Radiat Prot Dosimetry. 2009; 133: 97-104
        • Zhang S.X.
        • et al.
        Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study.
        Biomed Microdevices. 2009; 11: 925-933
        • Jones B.L.
        • Krishnan S.
        • Cho S.H.
        Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
        Med Phys. 2010; 37: 3809-3816
        • Cho S.
        • Jeong J.H.
        • Kim C.H.
        Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy.
        J Korean Phys Soc. 2010; 56: 1754-1758
        • Ngwa W.
        • Makrigiorgos G.M.
        • Berbeco R.I.
        Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement.
        Phys Med Biol. 2010; 55: 6533-6548
        • Chow J.C.
        • Leung M.K.
        • Jaffray D.A.
        Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
        Phys Med Biol. 2012; 57: 3323-3331
        • Lechtman E.
        • et al.
        Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location.
        Phys Med Biol. 2011; 56: 4631-4647
        • Leung M.K.
        • et al.
        Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.
        Med Phys. 2011; 38: 624-631
        • McMahon S.J.
        • et al.
        Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy.
        Radiother Oncol. 2011; 100: 412-416
        • Lechtman E.
        • et al.
        A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness.
        Phys Med Biol. 2013; 58: 3075-3087
        • Ngwa W.
        • Makrigiorgos G.M.
        • Berbeco R.I.
        Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.
        Med Phys. 2012; 39: 392-398
        • Berbeco R.I.
        • Ngwa W.
        • Makrigiorgos G.M.
        Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy.
        Int J Radiat Oncol Biol Phys. 2011; 81: 270-276
        • Roeske J.C.
        • et al.
        Characterization of the theorectical radiation dose enhancement from nanoparticles.
        Technol Cancer Res Treat. 2007; 6: 395-401
        • Lin Y.
        • et al.
        Gold nanoparticle induced vasculature damage in radiotherapy: comparing protons, megavoltage photons, and kilovoltage photons.
        Med. Phys. 2015; 42: 5890-5902
        • Lin Y.
        • et al.
        Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy.
        Phys Med Biol. 2015; 60: 4149-4168
        • Butterworth K.T.
        • et al.
        Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles.
        Radiat Res. 2008; 170: 381-387
        • Brun E.
        • Sanche L.
        • Sicard-Roselli C.
        Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution.
        Colloids Surf B Biointerfaces. 2009; 72: 128-134
        • Zheng Y.
        • Sanche L.
        Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation.
        Radiat Res. 2009; 172: 114-119
        • Foley E.A.
        • et al.
        Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation.
        Chem Commun (Camb). 2005; 25: 3192-3194
        • Jain S.
        • Hirst D.G.
        O'sullivan J.M., Gold nanoparticles as novel agents for cancer therapy.
        Br J Radiol. 2012; 1010: 101-113
        • Coulter J.A.
        • Hyland W.B.
        • Nicol J.
        • Currell F.J.
        Radiosensitising nanoparticles as novel cancer therapeutics - pipe dream or realistic prospect?.
        Clin Oncol. 2013; 25: 593-603
        • Su X.Y.
        • et al.
        Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy.
        Cancer Biol Med. 2014; 11: 86-91
        • Pottier A.
        • Borghi E.
        • Levy L.
        New use of metals as nanosized radioenhancers.
        Anticancer Res. 2014; 34: 443-453
        • Ngwa W.
        • et al.
        Targeted radiotherapy with gold nanoparticles: current status and future perspectives.
        Nanomedicine (Lond). 2014; 9: 1063-1082
        • Kwatra D.
        • Venugopal A.
        • Anant S.
        Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer.
        Transl Cancer Res. 2013; 2: 330-342
        • Warters R.L.
        • et al.
        Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage.
        Curr Top Radiat Res Q. 1978; 12: 389-407
        • Hainfeld J.F.
        • et al.
        Radiotherapy enhancement with gold nanoparticles.
        J Pharm Pharmacol. 2008; 60: 977-985
        • Fuks Z.
        • Kolesnick R.
        Engaging the vascular component of the tumor response.
        Cancer Cell. 2005; 8: 89-91
        • Lee J.
        • et al.
        Gold nanoparticles in breast cancer treatment: promise and potential pitfalls.
        Cancer Lett. 2014; 347: 46-53
        • Meyn R.E.
        • et al.
        Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors.
        Int J Radiat Oncol Biol Phys. 1994; 30: 619-624
        • Rosa S.
        • et al.
        Biological mechanisms of gold nanoparticle radiosensitization.
        Cancer Nanotechnol. 2017; 8: 2
        • Fraga S.
        • et al.
        Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration.
        Nanomedicine. 2014; 10: 1757-1766
        • Sadauskas E.
        • et al.
        Protracted elimination of gold nanoparticles from mouse liver.
        Nanomedicine. 2009; 5: 162-169
        • Abdelhalim M.A.
        • Jarrar B.M.
        Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration.
        J Nanobiotechnol. 2012; 10: 5
        • Abdelhalim M.A.
        • Jarrar B.M.
        Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver.
        Lipids Health Dis. 2011; 10: 166
        • Balasubramanian S.K.
        • et al.
        Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats.
        Biomaterials. 2010; 31: 2034-2042
        • Cho W.S.
        • et al.
        Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles.
        Toxicol Appl Pharmacol. 2009; 236: 16-24
        • Zhang X.D.
        • et al.
        In vivo renal clearance, biodistribution, toxicity of gold nanoclusters.
        Biomaterials. 2012; 33: 4628-4638
        • Hwang J.H.
        • et al.
        Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis.
        Toxicology. 2012; 294: 27-35
        • Zhang X.D.
        • et al.
        Toxicologic effects of gold nanoparticles in vivo by different administration routes.
        Int J Nanomedicine. 2010; 5: 771-781
        • Chen Y.S.
        • et al.
        Assessment of the In Vivo Toxicity of Gold Nanoparticles.
        Nanoscale Res Lett. 2009; 4: 858-864
        • Gerber A.
        • et al.
        Gold nanoparticles: recent aspects for human toxicology.
        J Occup Med Toxicol. 2013; 8: 32
        • Walkey C.D.
        • Olsen J.
        • Guo H.
        • Emili A.
        • Chan W.C.W.
        Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.
        JACS. 2011; 134: 2139-2147
        • Blanco E.
        • Shen H.
        • Ferrari M.
        Principles of nanoparticle design for overcoming biological barriers to drug delivery.
        Nat Biotechnol. 2015; 33: 941-951
        • Zhang G.
        • et al.
        Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice.
        Biomaterials. 2009; 30: 1928-1936
        • Chou L.Y.
        • Chan W.C.
        Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models.
        Adv Healthc Mater. 2012; 1: 714-721
        • Hirn S.
        • Semmler-Behnke M.
        • Schleh C.
        • Wenk A.
        • Lipka J.
        • Schaffler M.
        • Takenaka S.
        • Moller W.
        • Schmid G.
        • Simon U.
        • Kreyling W.G.
        Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration.
        Eur J Pharm Biopharm. 2012; 77: 407-416
        • Simpson C.A.
        • et al.
        Unexpected Toxicity of Mono layer Protected Gold Clusters Eliminated by PEG-Thiol Place Exchange Reactions.
        Chemical Research in Toxicology. 2010; 23: 1608-1616
        • Perrault S.D.
        • et al.
        Mediating tumor targeting efficiency of nanoparticles through design.
        Nano Lett. 2009; 9: 1909-1915
        • Hainfeld J.F.
        • et al.
        Gold nanoparticles: a new X-ray contrast agent.
        Br J Radiol. 2006; 79: 248-253
        • Chattopadhyay N.
        • et al.
        Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo.
        Mol Pharm. 2012; 9: 2168-2179
        • Chen C.H.
        • et al.
        Establishment of a trimodality analytical platform for tracing, imaging and quantification of gold nanoparticles in animals by radiotracer techniques.
        Anal Chem. 2015; 87: 601-608
        • Albanese A.
        • Chan W.C.
        Effect of gold nanoparticle aggregation on cell uptake and toxicity.
        ACS Nano. 2011; 5: 5478-5489
        • Dobrovolskaia M.A.
        • et al.
        Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles.
        Nanomedicine. 2009; 5: 106-117
        • Boulos S.P.
        • et al.
        Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces.
        Langmuir. 2013; 29: 14984-14996
        • Chithrani B.D.
        • Chan W.C.
        Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.
        Nano Lett. 2007; 7: 1542-1550
        • Chithrani B.D.
        • Ghazani A.A.
        • Chan W.C.
        Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.
        Nano Lett. 2006; 6: 662-668
        • Cho E.C.
        • et al.
        Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant.
        Nano Lett. 2009; 9: 1080-1084
        • Jiang Y.
        • et al.
        The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles.
        ACS Nano. 2015; 9: 9986-9993
        • Khoshgard K.
        • et al.
        Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques.
        Phys Med Biol. 2014; 59: 2249-2263
        • Xiao F.
        • et al.
        On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles.
        Nanotechnology. 2011; 22: 465101
        • McMahon S.J.
        • et al.
        Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles.
        Sci Rep. 2011; 1: 18
        • Zheng Y.
        • Ayotte P.
        • Hunting D.J.
        • Sanche L.
        Radiosensitization by gold nanoparticles: comparison of DNA damage induced by low and high-energy electrons.
        J Biomed Nanotechnol. 2008; 4: 469-473
        • Tkachenko A.G.
        • et al.
        Multifunctional gold nanoparticle-peptide complexes for nuclear targeting.
        J Am Chem Soc. 2003; 125: 4700-4701
        • Pan Y.
        • et al.
        Size-dependent cytotoxicity of gold nanoparticles.
        Small. 2007; 3: 1941-1949
        • Gilles M.
        • Brun E.
        • Sicard-Roselli C.
        Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation.
        Colloids Surfaces B: Biointerfaces. 2014; 123: 770-777
        • Connor E.E.
        • Mwamuka J.
        • Gole A.
        • Murphy C.J.
        • Wyatt M.D.
        Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.
        Small. 2005; 1: 325-327
        • Vogelzang N.J.
        Continuous infusion chemotherapy: a critical review.
        J Clin Oncol. 1984; 2: 1289-1304
        • Kudgus R.A.
        • et al.
        Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component.
        Sci Rep. 2014; 4: 5669
        • Markman M.
        Intraperitoneal chemotherapy in the management of ovarian cancer: focus on carboplatin.
        Ther Clin Risk Manag. 2009; 5: 161-168
        • Markman M.
        • Walker J.L.
        Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment.
        J Clin Oncol. 2006; 24: 988-994
        • de Bree E.
        • Witkamp A.J.
        • Zoetmulder F.A.
        Intraperitoneal chemotherapy for colorectal cancer.
        J Surg Oncol. 2002; 79: 46-61
        • Speyer J.L.
        The rationale behind intraperitoneal chemotherapy in gastrointestinal malignancies.
        Semin Oncol. 1985; 12: 23-28
      5. Cho S.H. Krishnan S. Cancer nanotechnology: principles and applications in radiation oncology. CRC Press, 2013: 284
        • Muller J.H.
        The treatment of cancer of the ovaries. Its improvement by intraperitoneal administration of radioactive colloidal gold.
        Rev Fr Gynecol Obstet. 1963; 58: 197-214
        • Patyanik M.
        • Mayer A.
        • Polgar I.
        Results of ovary tumor treatment with abdominally administered (198)Au evaluated on the basis of long term follow up.
        Pathol Oncol Res. 2002; 8: 54-57
        • Arvizo R.R.
        • et al.
        Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles.
        PLoS One. 2011; 6: e24374
        • Abdelhalim M.A.
        • Mady M.M.
        Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study.
        Lipids Health Dis. 2011; 10: 195
        • Khan H.A.
        • et al.
        Effect of gold nanoparticles on glutathione and malondialdehyde levels in liver, lung and heart of rats.
        Saudi J Biol Sci. 2012; 19: 461-464
        • Celikoglu F.
        • Celikoglu S.I.
        • Goldberg E.P.
        Bronchoscopic intratumoral chemotherapy of lung cancer.
        Lung Cancer. 2008; 61: 1-12
        • Jaffray D.A.
        Image-guided radiotherapy: from current concept to future perspectives.
        Nat Rev Clin Oncol. 2012; 9: 688-699
        • Gu Y.X.
        • Helenius M.
        • Vaananen K.
        • Bulanova D.
        • Saarela J.
        • Sokolenko A.
        • Martens J.
        • Imyanitov E.
        • Kuznetsov S.
        BRCA1-deficient breast cancer cell lines are resistant to MEK inhibitors and show distinct sensitivities to 6-thioguanine.
        Sci Rep. 2016; 6
        • De C.
        Short-term screening assays for the identification of therapeutics for cancer.
        Cancer Research. 2016; 76: 3443-3445
        • Ong K.J.
        • MacCormack T.
        • Clark R.J.
        • Ede J.D.
        • Ortega V.A.
        • Felix L.C.
        • Dang M.K.M.
        • Ma G.
        • Fenniri H.
        • Veinot J.G.C.
        • Goss G.G.
        Widespread nanoparticle-assay interference: implications for nanotoxicity testing.
        PLOS ONE. 2014; 9
        • Cui L.
        • et al.
        Significant radiation enhancement effects by gold nanoparticles in combination with cisplatin in triple negative breast cancer cells and tumor xenografts.
        Radiat Res. 2017;
        • Anselmo A.
        • Mitragotir S.
        A review of clinical translation of inorganic nanoparticles.
        AAPS J. 2015; 17
        • Bonvalot S.
        • L.P.C.
        • Baera T.
        • Buy X.
        • Italiano A.
        • Stockle E.
        • Terrier P.
        • Lassau N.
        • Le Cesne A.
        Phase I study of NBTXR3 nanoparticles, in patients with advanced soft tissue sarcoma (STS).
        J Clin Oncol. 2014; 32
        • Thoms J.
        • Goda J.
        • Zlotta A.R.
        • Fleshner N.E.
        • Van der Kwast T.H.
        • Supiot S.
        • Warde P.
        Neoadjuvant radiotherapy for locally advanced and high-risk prostate cancer.
        Nat Rev Clin Oncol. 2011; 8: 107-113
        • Calitchi E.
        • Kirova Y.
        • Otmezguiine Y.
        Long-term results of neoadjuvant radiation therapy for breast cancer.
        Int J Cancer. 2001; 96: 253-259
        • Anselmo A.C.
        • Mitragotri S.
        A review of clinical translation of inorganic nanoparticles.
        AAPS. 2015; 17: 1041-1054