Advertisement

Utilizing circulating tumour DNA in radiation oncology

  • Ariana Rostami
    Affiliations
    Princess Margaret Cancer Center, University Health Network, Toronto, Canada

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    Search for articles by this author
  • Scott V. Bratman
    Correspondence
    Corresponding author at: 101 College Street, MaRS/PMCRT 14-313, Toronto, ON M5G 1L7, Canada.
    Affiliations
    Princess Margaret Cancer Center, University Health Network, Toronto, Canada

    Department of Medical Biophysics, University of Toronto, Toronto, Canada

    Department of Radiation Oncology, University of Toronto, Toronto, Canada
    Search for articles by this author

      Abstract

      Emerging technologies for detection of circulating tumour DNA (ctDNA) are expanding the possibilities for clinical impact to patients with localized, potentially curable cancer. For such patients, ctDNA analysis could aid in prognostication, prediction of treatment response, longitudinal monitoring for adaptive treatment, and evaluation of minimal residual disease. Radiation oncologists currently have few tools at their disposal for predicting or rapidly assessing treatment efficacy. By reflecting the genetic and epigenetic makeup of tumours as well as dynamic changes with treatment, ctDNA as a biomarker for radiation response could enable new personalized treatment approaches. In this review, we will discuss recent advances in ctDNA technologies and potential clinical applications of ctDNA analysis throughout the therapeutic course. Furthermore, we will consider how ctDNA analysis could someday guide radiotherapy prescriptions by revealing differences in tumour radiophenotype.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lacombe J.
        • Azria D.
        • Mange A.
        • Solassol J.
        Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes.
        Expert Rev Proteomics. 2013; 10: 33-42
        • Bibault J.-E.
        • Fumagalli I.
        • Ferté C.
        • Chargari C.
        • Soria J.-C.
        • Deutsch E.
        Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review.
        Cancer Metastasis Rev. 2013; 32: 479-492
        • Baumann M.
        • Krause M.
        • Overgaard J.
        • Debus J.
        • Bentzen S.M.
        • Daartz J.
        • et al.
        Radiation oncology in the era of precision medicine.
        Nat Rev Cancer. 2016; 16: 234-249
        • Mandel P.
        • Metais P.
        Not Available.
        C R Seances Soc Biol Fil. 1948; 142: 241-243
        • Anker P.
        • Mulcahy H.
        • Chen X.Q.
        • Stroun M.
        Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients.
        Cancer Metastasis Rev. 1999; 18: 65-73
        • Stroun M.
        • Lyautey J.
        • Lederrey C.
        • Olson-Sand A.
        • Anker P.
        About the possible origin and mechanism of circulating DNA apoptosis and active DNA release.
        Clin Chim Acta. 2001; 313: 139-142
        • Snyder M.W.
        • Kircher M.
        • Hill A.J.
        • Daza R.M.
        • Shendure J.
        Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin.
        Cell. 2016; 164: 57-68
        • Zheng Y.W.L.
        • Chan K.C.A.
        • Sun H.
        • Jiang P.
        • Su X.
        • Chen E.Z.
        • et al.
        Nonhematopoietically derived DNA is shorter than hematopoietically derived DNA in plasma: a transplantation model.
        Clin Chem. 2012; 58: 549-558
        • Fleischhacker M.
        • Schmidt B.
        Circulating nucleic acids (CNAs) and cancer–a survey.
        Biochim Biophys Acta. 2007; 1775: 181-232
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • Kinde I.
        • Wang Y.
        • Agrawal N.
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra24
        • Diehl F.
        • Li M.
        • Dressman D.
        • He Y.
        • Shen D.
        • Szabo S.
        • et al.
        Detection and quantification of mutations in the plasma of patients with colorectal tumors.
        Proc Natl Acad Sci U S A. 2005; 102: 16368-16373
        • Newman A.M.
        • Bratman S.V.
        • To J.
        • Wynne J.F.
        • Eclov N.C.W.
        • Modlin L.A.
        • et al.
        An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage.
        Nat Med. 2014; 20: 548-554
        • Kis O.
        • Kaedbey R.
        • Danesh A.
        • Dowar M.
        • Li T.
        • Li Z.
        • et al.
        Circulating tumor DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates.
        Nat Commun. 2017;
        • Jahr S.
        • Hentze H.
        • Englisch S.
        • Hardt D.
        • Fackelmayer F.O.
        • Hesch R.-D.
        • et al.
        DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells.
        Cancer Res. 2001; 61: 1659-1665
        • Diaz L.A.
        • Bardelli A.
        Liquid biopsies: genotyping circulating tumor DNA.
        J Clin Oncol. 2014; 32: 579-586
        • Schwarzenbach H.
        • Hoon D.S.B.
        • Pantel K.
        Cell-free nucleic acids as biomarkers in cancer patients.
        Nat Rev Cancer. 2011; 11: 426-437
        • Mouliere F.
        • Robert B.
        • Peyrotte E.A.
        • Del Rio M.
        • Ychou M.
        • Molina F.
        • et al.
        High fragmentation characterizes tumour-derived circulating DNA.
        PLoS One. 2011; 6: e23418
        • Diehl F.
        • Schmidt K.
        • Choti M.A.
        • Romans K.
        • Goodman S.
        • Li M.
        • et al.
        Circulating mutant DNA to assess tumor dynamics.
        Nat Med. 2008; 14: 985-990
        • Thierry A.R.
        • Mouliere F.
        • Gongora C.
        • Ollier J.
        • Robert B.
        • Ychou M.
        • et al.
        Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts.
        Nucleic Acids Res. 2010; 38: 6159-6175
        • Fan H.C.
        • Blumenfeld Y.J.
        • Chitkara U.
        • Hudgins L.
        • Quake S.R.
        Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood.
        Proc Natl Acad Sci U S A. 2008; 105: 16266-16271
        • Lo Y.M.D.
        • Chan K.C.A.
        • Sun H.
        • Chen E.Z.
        • Jiang P.
        • Lun F.M.F.
        • et al.
        Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus.
        Sci Transl Med. 2010; 2: 61ra91
        • Wang B.G.
        • Huang H.-Y.
        • Chen Y.-C.
        • Bristow R.E.
        • Kassauei K.
        • Cheng C.-C.
        • et al.
        Increased plasma DNA integrity in cancer patients.
        Cancer Res. 2003; 63: 3966-3968
        • Jiang P.
        • Chan C.W.M.
        • Chan K.C.A.
        • Cheng S.H.
        • Wong J.
        • Wong V.W.-S.
        • et al.
        Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients.
        Proc Natl Acad Sci U S A. 2015; 112: E1317-E1325
        • Yao W.
        • Mei C.
        • Nan X.
        • Hui L.
        Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study.
        Gene. 2016; 590: 142-148
        • Lo Y.M.
        • Chan L.Y.
        • Lo K.W.
        • Leung S.F.
        • Zhang J.
        • Chan A.T.
        • et al.
        Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma.
        Cancer Res. 1999; 59: 1188-1191
        • To E.W.H.
        • Chan K.C.A.
        • Leung S.-F.
        • Chan L.Y.S.
        • To K.-F.
        • Chan A.T.C.
        • et al.
        Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment of nasopharyngeal carcinoma.
        Clin Cancer Res. 2003; 9: 3254-3259
        • Dawson S.-J.
        • Tsui D.W.Y.
        • Murtaza M.
        • Biggs H.
        • Rueda O.M.
        • Chin S.-F.
        • et al.
        Analysis of circulating tumor DNA to monitor metastatic breast cancer.
        N Engl J Med. 2013; 368: 1199-1209
        • Chaudhuri A.A.
        • Binkley M.S.
        • Osmundson E.C.
        • Alizadeh A.A.
        • Diehn M.
        Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA.
        Semin Radiat Oncol. 2015; 25: 305-312
        • Newton C.R.
        • Graham A.
        • Heptinstall L.E.
        • Powell S.J.
        • Summers C.
        • Kalsheker N.
        • et al.
        Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).
        Nucleic Acids Res. 1989; 17: 2503-2516
        • Milbury C.A.
        • Li J.
        • Makrigiorgos G.M.
        PCR-based methods for the enrichment of minority alleles and mutations.
        Clin Chem. 2009; 55: 632-640
        • Kimura H.
        • Kasahara K.
        • Kawaishi M.
        • Kunitoh H.
        • Tamura T.
        • Holloway B.
        • et al.
        Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer.
        Clin Cancer Res. 2006; 12: 3915-3921
        • Vogelstein B.
        • Kinzler K.W.
        Digital PCR.
        Proc Natl Acad Sci U S A. 1999; 96: 9236-9241
        • Dressman D.
        • Yan H.
        • Traverso G.
        • Kinzler K.W.
        • Vogelstein B.
        Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations.
        Proc Natl Acad Sci U S A. 2003; 100: 8817-8822
      1. Liu Q, Sommer SS. Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification. Biotechniques 2000;29:1072–6, 1078, 1080 passim.

        • Forshew T.
        • Murtaza M.
        • Parkinson C.
        • Gale D.
        • Tsui D.W.Y.
        • Kaper F.
        • et al.
        Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA.
        Sci Transl Med. 2012; 4: 136ra68
        • Taly V.
        • Pekin D.
        • Benhaim L.
        • Kotsopoulos S.K.
        • Le Corre D.
        • Li X.
        • et al.
        Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.
        Clin Chem. 2013; 59: 1722-1731
        • Murtaza M.
        • Dawson S.-J.
        • Tsui D.W.Y.
        • Gale D.
        • Forshew T.
        • Piskorz A.M.
        • et al.
        Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.
        Nature. 2013; 497: 108-112
        • Newman A.M.
        • Lovejoy A.F.
        • Klass D.M.
        • Kurtz D.M.
        • Chabon J.J.
        • Scherer F.
        • et al.
        Integrated digital error suppression for improved detection of circulating tumor DNA.
        Nat Biotechnol. 2016; 34: 547-555
        • Kinde I.
        • Wu J.
        • Papadopoulos N.
        • Kinzler K.W.
        • Vogelstein B.
        Detection and quantification of rare mutations with massively parallel sequencing.
        Proc Natl Acad Sci. 2011; 108: 9530-9535
        • Van Elmpt W.
        • Pöttgen C.
        • De Ruysscher D.
        Therapy response assessment in radiotherapy of lung cancer.
        Q J Nucl Med Mol Imaging. 2011; 55: 648-654
        • Bhatnagar P.
        • Subesinghe M.
        • Patel C.
        • Prestwich R.
        • Scarsbrook A.F.
        Functional imaging for radiation treatment planning, response assessment, and adaptive therapy in head and neck cancer.
        Radiographics. 2013; 33: 1909-1929
        • Jarraya H.
        • Mirabel X.
        • Taieb S.
        • Dewas S.
        • Tresch E.
        • Bonodeau F.
        • et al.
        Image-based response assessment of liver metastases following stereotactic body radiotherapy with respiratory tracking.
        Radiat Oncol. 2013; 8: 24
        • Lee A.K.
        • D’Amico A.V.
        Utility of prostate-specific antigen kinetics in addition to clinical factors in the selection of patients for salvage local therapy.
        J Clin Oncol. 2005; 23: 8192-8197
        • Garcia-Murillas I.
        • Schiavon G.
        • Weigelt B.
        • Ng C.
        • Hrebien S.
        • Cutts R.J.
        • et al.
        Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer.
        Sci Transl Med. 2015; 7 (302ra133–302ra133)
        • Gray E.S.
        • Rizos H.
        • Reid A.L.
        • Boyd S.C.
        • Pereira M.R.
        • Lo J.
        • et al.
        Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma.
        Oncotarget. 2015; 6: 42008-42018
        • Chan K.C.A.
        Plasma Epstein-Barr virus DNA as a biomarker for nasopharyngeal carcinoma.
        Chin J Cancer. 2014; 33: 598-603
        • Lo Y.M.D.
        • Chan A.T.C.
        • Chan L.Y.S.
        • Leung S.-F.
        • Lam C.-W.
        • Huang D.P.
        • et al.
        Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating epstein-Barr virus DNA.
        Cancer Res. 2000; 60
        • Lin J.-C.
        • Wang W.-Y.
        • Chen K.Y.
        • Wei Y.-H.
        • Liang W.-M.
        • Jan J.-S.
        • et al.
        Quantification of Plasma Epstein-Barr Virus DNA in patients with advanced nasopharyngeal carcinoma.
        N Engl J Med. 2004; 350: 2461-2470
        • Gillison M.L.
        • Koch W.M.
        • Capone R.B.
        • Spafford M.
        • Westra W.H.
        • Wu L.
        • et al.
        Evidence for a causal association between human papillomavirus and a subset of head and neck cancers.
        J Natl Cancer Inst. 2000; 92: 709-720
        • Capone R.B.
        • Pai S.I.
        • Koch W.M.
        • Gillison M.L.
        • Danish H.N.
        • Westra W.H.
        • et al.
        Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma.
        Clin Cancer Res. 2000; 6: 4171-4175
        • Cao H.
        • Banh A.
        • Kwok S.
        • Shi X.
        • Wu S.
        • Krakow T.C.
        • et al.
        Quantitation of the Human Papillomavirus DNA in the Plasma of Patients with Oropharyngeal Carcinoma.
        Int J Radiat Oncol Biol Phys Int J Radiat Oncol Biol Phys. 2012; 1: 351-358
        • Ahn S.M.
        • Chan J.Y.K.
        • Zhang Z.
        • Wang H.
        • Khan Z.
        • Bishop J.A.
        • et al.
        Saliva and plasma quantitative polymerase chain reaction-based detection and surveillance of human papillomavirus-related head and neck cancer.
        JAMA Otolaryngol Head Neck Surg. 2014; 140: 846-854
        • Dahlstrom K.R.
        • Li G.
        • Hussey C.S.
        • Vo J.T.
        • Wei Q.
        • Zhao C.
        • et al.
        Circulating human papillomavirus DNA as a marker for disease extent and recurrence among patients with oropharyngeal cancer.
        Cancer. 2015; 121: 3455-3464
        • Pornthanakasem W.
        • Shotelersuk K.
        • Termrungruanglert W.
        • Voravud N.
        • Niruthisard S.
        • Mutirangura A.
        Human papillomavirus DNA in plasma of patients with cervical cancer.
        BMC Cancer. 2001; 1: 2
        • Dong S.M.
        • Pai S.I.
        • Rha S.-H.
        • Hildesheim A.
        • Kurman R.J.
        • Schwartz P.E.
        • et al.
        Detection and quantitation of human papillomavirus DNA in the plasma of patients with cervical carcinoma.
        Cancer Epidemiol Biomarkers Prev. 2002; 11: 3-6
        • Shimada T.
        • Yamaguchi N.
        • Nishida N.
        • Yamasaki K.
        • Miura K.
        • Katamine S.
        • et al.
        Human papillomavirus DNA in plasma of patients with HPV16 DNA-positive uterine cervical cancer.
        Jpn J Clin Oncol. 2010; 40: 420-424
        • Jeannot E.
        • Becette V.
        • Campitelli M.
        • Calméjane M.-A.
        • Lappartient E.
        • Ruff E.
        • et al.
        Circulating human papillomavirus DNA detected using droplet digital PCR in the serum of patients diagnosed with early stage human papillomavirus-associated invasive carcinoma.
        Hip Int. 2016; 2: 201-209
        • Lecomte T.
        • Berger A.
        • Zinzindohoué F.
        • Micard S.
        • Landi B.
        • Blons H.
        • et al.
        Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis.
        Int J Cancer. 2002; 100: 542-548
        • Bratman S.V.
        • Newman A.M.
        • Alizadeh A.A.
        • Diehn M.
        Potential clinical utility of ultrasensitive circulating tumor DNA detection with CAPP-Seq.
        Exp Rev Mol Diagn. 2015;
        • Tissot C.
        • Toffart A.-C.
        • Villar S.
        • Souquet P.-J.
        • Merle P.
        • Moro-Sibilot D.
        • et al.
        Circulating free DNA concentration is an independent prognostic biomarker in lung cancer.
        Eur Respir J. 2015; 46: 1773-1780
        • Kumar S.
        • Guleria R.
        • Singh V.
        • Bharti A.C.
        • Mohan A.
        • Das B.C.
        Plasma DNA level in predicting therapeutic efficacy in advanced nonsmall cell lung cancer.
        Eur Respir J. 2010; 36: 885-892
        • Nygaard A.D.
        • Garm Spindler K.-L.
        • Pallisgaard N.
        • Andersen R.F.
        • Jakobsen A.
        The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer.
        Lung Cancer. 2013; 79: 312-317
        • Wang S.
        • An T.
        • Wang J.
        • Zhao J.
        • Wang Z.
        • Zhuo M.
        • et al.
        Potential clinical significance of a plasma-based KRAS mutation analysis in patients with advanced non-small cell lung cancer.
        Clin Cancer Res. 2010; 16: 1324-1330
        • Ben Lassoued A.
        • Nivaggioni V.
        • Gabert J.
        Minimal residual disease testing in hematologic malignancies and solid cancer.
        Expert Rev Mol Diagn. 2014; 14: 699-712
        • Stephenson A.J.
        • Scardino P.T.
        • Kattan M.W.
        • Pisansky T.M.
        • Slawin K.M.
        • Klein E.A.
        • et al.
        Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy.
        J Clin Oncol. 2007; 25: 2035-2041
        • Stish B.J.
        • Pisansky T.M.
        • Harmsen W.S.
        • Davis B.J.
        • Tzou K.S.
        • Choo R.
        • et al.
        Improved metastasis-free and survival outcomes with early salvage radiotherapy in men with detectable prostate-specific antigen after prostatectomy for prostate cancer.
        J Clin Oncol. 2016; https://doi.org/10.1200/JCO.2016.68.3425
        • Trock B.J.
        • Han M.
        • Freedland S.J.
        • Humphreys E.B.
        • DeWeese T.L.
        • Partin A.W.
        • et al.
        Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy.
        JAMA. 2008; 299: 2760-2769
      2. Wang W-Y, Twu C-W, Chen H-H, Jiang R-S, Wu C-T, Liang K-L, et al. Long-Term Survival Analysis of Nasopharyngeal Carcinoma by Plasma Epstein-Barr Virus DNA Levels n.d. doi:10.1002/cncr.27853.

        • Twu C.-W.
        • Wang W.-Y.
        • Liang W.-M.
        • Jan J.-S.
        • Jiang R.-S.
        • Chao J.
        • et al.
        Comparison of the prognostic impact of serum anti-EBV antibody and plasma EBV DNA assays in nasopharyngeal carcinoma.
        Int J Radiat Oncol Biol Phys. 2007; 67: 130-137
        • Chan A.T.C.
        • Lo Y.M.D.
        • Zee B.
        • Chan L.Y.S.
        • Ma B.B.Y.
        • Leung S.-F.
        • et al.
        Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma.
        J Natl Cancer Inst. 2002; 94: 1614-1619
        • Hou X.
        • Zhao C.
        • Guo Y.
        • Han F.
        • Lu L.-X.
        • Wu S.-X.
        • et al.
        Different clinical significance of pre- and post-treatment plasma Epstein-Barr virus DNA load in nasopharyngeal carcinoma treated with radiotherapy.
        Clin Oncol. 2011; 23: 128-133
        • Tie J.
        • Wang Y.
        • Tomasetti C.
        • Li L.
        • Springer S.
        • Kinde I.
        Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer.
        Sci Transl Med. 2016; 8 (346ra92–346ra92)
        • Wan J.C.M.
        • Massie C.
        • Garcia-Corbacho J.
        • Mouliere F.
        • Brenton J.D.
        • Caldas C.
        • et al.
        Liquid biopsies come of age: towards implementation of circulating tumour DNA.
        Nat Rev Cancer. 2017; https://doi.org/10.1038/nrc.2017.7
        • Olsson E.
        • Winter C.
        • George A.
        • Chen Y.
        • Howlin J.
        • Tang M.-H.E.
        • et al.
        Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease.
        EMBO Mol Med. 2015; 7: 1034-1047
        • Majure M.
        • Logan A.C.
        What the blood knows: interrogating circulating tumor DNA to predict progression of minimal residual disease in early breast cancer.
        Ann Transl Med. 2016; 4: 543
        • Diaz Jr, L.A.
        • Williams R.T.
        • Wu J.
        • Kinde I.
        • Hecht J.R.
        • Berlin J.
        • et al.
        The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers.
        Nature. 2012; 486: 537-540
        • Murtaza M.
        • Dawson S.-J.
        • Pogrebniak K.
        • Rueda O.M.
        • Provenzano E.
        • Grant J.
        • et al.
        Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer.
        Nat Commun. 2015; 6: 8760
        • Leung S.F.
        • Chan K.C.A.
        • Ma B.B.
        • Hui E.P.
        • Mo F.
        • Chow K.C.K.
        • et al.
        Plasma Epstein-Barr viral DNA load at midpoint of radiotherapy course predicts outcome in advanced-stage nasopharyngeal carcinoma.
        Ann Oncol. 2014; 25: 1204-1208
        • Rago C.
        • Huso D.L.
        • Diehl F.
        • Karim B.
        • Liu G.
        • Papadopoulos N.
        • et al.
        Serial assessment of human tumor burdens in mice by the analysis of circulating DNA.
        Cancer Res. 2007; 67: 9364-9370
        • Lo Y.M.
        • Leung S.F.
        • Chan L.Y.
        • Chan A.T.
        • Lo K.W.
        • Johnson P.J.
        • et al.
        Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma.
        Cancer Res. 2000; 60: 2351-2355
        • Xi L.
        • Pham T.H.
        • Payabyab E.C.
        • Sherry R.M.
        • Rosenberg S.A.
        • Raffeld M.
        Circulating Tumor DNA as an Early Indicator of Response to T-cell Transfer Immunotherapy in Metastatic Melanoma.
        Clin Cancer Res. 2016; 22: 5480-5486
        • Brock W.A.
        • Baker F.L.
        • Wike J.L.
        • Sivon S.L.
        • Peters L.J.
        Cellular radiosensitivity of primary head and neck squamous cell carcinomas and local tumor control.
        Int J Radiat Oncol*Biol*Phys. 1990; 18: 1283-1286
        • West C.M.
        • Davidson S.E.
        • Hendry J.H.
        • Hunter R.D.
        Prediction of cervical carcinoma response to radiotherapy.
        Lancet. 1991; 338: 818
        • Ang K.K.
        • Harris J.
        • Wheeler R.
        • Weber R.
        • Rosenthal D.I.
        • Nguyen-Tân P.F.
        • et al.
        Human papillomavirus and survival of patients with oropharyngeal cancer.
        N Engl J Med. 2010; 363: 24-35
        • Lassen P.
        • Primdahl H.
        • Johansen J.
        • Kristensen C.A.
        • Andersen E.
        • Andersen L.J.
        • et al.
        Impact of HPV-associated p16-expression on radiotherapy outcome in advanced oropharynx and non-oropharynx cancer.
        Radiother Oncol. 2014; 113: 310-316
      3. Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ, et al. KEAP1/NRF2 and TP53 in Lung Squamous Cell Carcinoma Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiotherapy response prediction 2017. doi:10.1158/2159-8290.CD-16-0127.

        • Bentzen S.M.
        • Overgaard J.
        Patient-to-patient variability in the expression of radiation-induced normal tissue injury.
        Semin Radiat Oncol. 1994; 4: 68-80
        • Kozin S.V.
        • Niemierko A.
        • Huang P.
        • Silva J.
        • Doppke K.P.
        • Suit H.D.
        Inter- and intramouse heterogeneity of radiation response for a growing paired organ.
        Radiat Res. 2008; 170: 264-267
        • Krause M.
        • Gurtner K.
        • Deuse Y.
        • Baumann M.
        Heterogeneity of tumour response to combined radiotherapy and EGFR inhibitors: differences between antibodies and TK inhibitors.
        Int J Radiat Biol. 2009; 85: 943-954
        • Schütze C.
        • Bergmann R.
        • Yaromina A.
        • Hessel F.
        • Kotzerke J.
        • Steinbach J.
        • et al.
        Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice.
        Radiother Oncol. 2007; 83: 311-315
        • Schütze C.
        • Bergmann R.
        • Brüchner K.
        • Mosch B.
        • Yaromina A.
        • Zips D.
        • et al.
        Effect of [18F]FMISO stratified dose-escalation on local control in FaDu hSCC in nude mice.
        Radiother Oncol. 2014; 4: 81-87
        • Meacham C.E.
        • Morrison S.J.
        Tumour heterogeneity and cancer cell plasticity.
        Nature. 2013; 501: 328-337
        • Jamal-Hanjani M.
        • Wilson G.A.
        • McGranahan N.
        • Birkbak N.J.
        • Watkins T.B.K.
        • Veeriah S.
        • et al.
        Tracking the Evolution of Non?Small-Cell Lung Cancer.
        N Engl J Med. 2017; 376: 2109-2121
        • Renovanz M.
        • Kim E.L.
        Intratumoral heterogeneity, its contribution to therapy resistance and methodological caveats to assessment.
        Front Oncol. 2014; 4: 142
        • Rocco J.W.
        Mutant allele tumor heterogeneity (MATH) and head and neck squamous cell carcinoma.
        Head Neck Pathol. 2015; 9: 1-5
        • Aparicio S.
        • Caldas C.
        The implications of clonal genome evolution for cancer medicine.
        N Engl J Med. 2013; 368: 842-851
        • Abbosh C.
        • Birkbak N.J.
        • Wilson G.A.
        • Jamal-Hanjani M.
        • Constantin T.
        • Salari R.
        • et al.
        Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
        Nature. 2017; 545: 446-451
        • Sun K.
        • Jiang P.
        • Chan K.C.A.
        • Wong J.
        • Cheng Y.K.Y.
        • Liang R.H.S.
        • et al.
        Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments.
        Proc Natl Acad Sci. 2015; 112: E5503-E5512
        • Lehmann-Werman R.
        • Neiman D.
        • Zemmour H.
        • Moss J.
        • Magenheim J.
        • Vaknin-Dembinsky A.
        • et al.
        Identification of tissue-specific cell death using methylation patterns of circulating DNA.
        Proc Natl Acad Sci U S A. 2016; 113: E1826-E1834
        • Barker H.E.
        • Paget J.T.E.
        • Khan A.A.
        • Harrington K.J.
        The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.
        Nat Rev Cancer. 2015; 15: 409-425
        • Janssens G.O.
        • Rademakers S.E.
        • Terhaard C.H.
        • Doornaert P.A.
        • Bijl H.P.
        • van den Ende P.
        • et al.
        Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial.
        J Clin Oncol. 2012; 30: 1777-1783
        • Toustrup K.
        • Sørensen B.S.
        • Lassen P.
        • Wiuf C.
        • Alsner J.
        • Overgaard J.
        • et al.
        Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck.
        Radiother Oncol. 2012; 102: 122-129
        • Overgaard J.
        Hypoxic radiosensitization: adored and ignored.
        J Clin Oncol. 2007; 25: 4066-4074
        • Thienpont B.
        • Steinbacher J.
        • Zhao H.
        • D’Anna F.
        • Kuchnio A.
        • Ploumakis A.
        • et al.
        Tumour hypoxia causes DNA hypermethylation by reducing TET activity.
        Nature. 2016; 537: 63-68