Advertisement
Lung cancer radiotherapy| Volume 123, ISSUE 3, P355-362, June 2017

Download started.

Ok

Verifying tumor position during stereotactic body radiation therapy delivery using (limited-arc) cone beam computed tomography imaging

      Abstract

      Background and purpose

      Proof of tumor position during stereotactic body radiotherapy (SBRT) delivery is desirable. We investigated if cone-beam CT (CBCT) scans reconstructed from (collimated) fluoroscopic kV images acquired during irradiation could show the dominant tumor position.

      Materials and methods

      Full-arc CBCT scans were reconstructed using FDK filtered back projection from 38 kV fluoroscopy datasets (16 patients) continuously acquired during volumetric modulated spine SBRT. CBCT-CT match values were compared to the average spine offset values found using template matching + triangulation of the individual kV images. Multiple limited-arc CBCTs were reconstructed from fluoroscopic images acquired during lung SBRT of an anthropomorphic thorax phantom using 20–180° arc lengths and for 3 breath-hold lung SBRT patients.

      Results

      Differences between 3D CBCT-CT match results and average spine offsets found using template matching + triangulation were 0.1 ± 0.1 mm for all directions (range: 0.0–0.5 mm). For limited-arc CBCTs of the thorax phantom, the automatic 3D CBCT-CT match results for arc lengths of 80–180° were ≤1 mm. 20° CBCT reconstruction still allowed for positional verification in 2D.

      Conclusions

      (Limited-arc) CBCT reconstructions of kV images acquired during irradiation can identify the dominant position of the tumor during treatment delivery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dahele M.
        • Zindler J.D.
        • Sanchez E.
        • Verbakel W.F.
        • Kuijer J.P.A.
        • Slotman B.J.
        • et al.
        Imaging for stereotactic spine radiotherapy: clinical considerations.
        Int J Radiat Oncol Biol Phys. 2011; 81: 321-330
        • Sahgal A.
        • Larson D.A.
        • Chang E.L.
        Stereotactic body radiosurgery for spinal metastases: a critical review.
        Int J Radiat Oncol Biol Phys. 2008; 71: 652-665
        • Peguret N.
        • Dahele M.
        • Cuijpers J.P.
        • Slotman B.J.
        • Verbakel W.F.A.R.
        Frameless high dose rate stereotactic lung radiotherapy: intrafraction tumor position and delivery time.
        Radiother Oncol. 2013; 107: 419-422
        • Dahele M.
        • Slotman B.
        • Verbakel W.
        Stereotactic body radiotherapy for spine and bony pelvis using flattening filter free volumetric modulated arc therapy, 6D cone-beam CT and simple positioning techniques: treatment time and patient stability.
        Acta Oncol. 2016; 55: 795-798
        • Hazelaar C.
        • Dahele M.
        • Mostafavi H.
        • Van Der Weide L.
        • Slotman B.J.
        • Verbakel W.F.A.R.
        Subsecond and submillimeter resolution positional verification for stereotactic irradiation of spinal lesions.
        Int J Radiat Oncol Biol Phys. 2016; 94: 1154-1162
        • Nakagawa K.
        • Yamashita H.
        • Shiraishi K.
        • Igaki H.
        • Terahara A.
        • Nakamura N.
        • et al.
        Verification of in-treatment tumor position using kilovoltage cone-beam computed tomography: a preliminary study.
        Int J Radiat Oncol Biol Phys. 2007; 69: 970-973
        • Nakagawa K.
        • Haga A.
        • Shiraishi K.
        • Yamashita H.
        • Igaki H.
        • Terahara A.
        • et al.
        First clinical cone-beam CT imaging during volumetric modulated arc therapy.
        Radiother Oncol. 2009; 90: 422-423
        • Li R.
        • Han B.
        • Meng B.
        • Maxim P.G.
        • Xing L.
        • Koong A.C.
        • et al.
        Clinical implementation of intrafraction cone beam computed tomography imaging during lung tumor stereotactic ablative radiation therapy.
        Int J Radiat Oncol Biol Phys. 2013; 87: 917-923
        • Van Herk M.
        • Ploeger L.
        • Sonke J.J.
        A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation.
        Radiother Oncol. 2011; 100: 365-369
        • Boylan C.J.
        • Marchant T.E.
        • Stratford J.
        • Malik J.
        • Choudhury A.
        • Shrimali R.
        • et al.
        A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery.
        Phys Med Biol. 2012; 57: 3727-3739
        • Feldkamp L.A.
        • Davis L.C.
        • Kress J.W.
        Practical cone-beam algorithm.
        J Opt Soc Am. 1984; 1: 612-619
        • Bahig H.
        • Campeau M.P.
        • Vu T.
        • Doucet R.
        • Béliveau Nadeau D.
        • Fortin B.
        • et al.
        Predictive parameters of cyberknife fiducial-less (XSight Lung) applicability for treatment of early non-small cell lung cancer: a single-center experience.
        Int J Radiat Oncol Biol Phys. 2013; 87: 583-589
        • van Sörnsen de Koste J.R.
        • Dahele M.
        • Mostafavi H.
        • Sloutsky A.
        • Senan S.
        • Slotman B.I.
        • et al.
        Markerless tracking of small lung tumors for stereotactic radiotherapy.
        Med Phys. 2015; 42: 1640-1652
        • Menten M.J.
        • Fast M.F.
        • Nill S.
        • Oelfke U.
        Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.
        Med Phys. 2015; 42: 6987-6998
        • Rozario T.
        • Bereg S.
        • Yan Y.
        • Chiu T.
        • Liu H.
        • Kearney V.
        • et al.
        An accurate algorithm to match imperfectly matched images for lung tumor detection without markers.
        J Appl Clin Med Phys. 2015; 16: 131-140
        • Tanaka R.
        • Sanada S.
        • Sakuta K.
        • Kawashima H.
        Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT).
        Phys Med Biol. 2015; 60: N209-N218
        • Wertz H.
        • Stsepankou D.
        • Blessing M.
        • Rossi M.
        • Knox C.
        • Brown K.
        • et al.
        Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer.
        Phys Med Biol. 2010; 55: 4203-4217
        • Poludniowski G.
        • Thomas M.D.R.
        • Evans P.M.
        • Webb S.
        CT reconstruction from portal images acquired during volumetric-modulated arc therapy.
        Phys Med Biol. 2010; 55: 5635-5651
        • Kida S.
        • Saotome N.
        • Masutani Y.
        • Yamashita H.
        • Ohtomo K.
        • Nakagawa K.
        • et al.
        4D-CBCT reconstruction using MV portal imaging during volumetric modulated arc therapy.
        Radiother Oncol. 2011; 100: 380-385
        • Choi K.
        • Xing L.
        • Koong A.
        • Li R.
        First study of on-treatment volumetric imaging during respiratory gated VMAT.
        Med Phys. 2013; 40: 40701
        • Meng B.
        • Xing L.
        • Han B.
        • Koong A.
        • Chang D.
        • Cheng J.
        • et al.
        Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study.
        Phys Med Biol. 2013; 58: 7777-7789
        • Zhang Y.
        • Yin F.-F.
        • Pan T.
        • Vergalasova I.
        • Ren L.
        • Zhang Y.
        Preliminary clinical evaluation of a 4D-CBCT estimation technique using prior information and limited-angle projections.
        Radiother Oncol. 2015; 115: 22-29
        • Ren L.
        • Zhang Y.
        • Yin F.-F.
        A limited-angle intrafraction verification (LIVE) system for radiation therapy.
        Med Phys. 2014; 41: 20701
        • Ng S.K.
        • Zygmanski P.
        • Jeung A.
        • Mostafavi H.
        • Hesser J.
        • Bellon J.R.
        • et al.
        Optimal parameters for clinical implementation of breast cancer patient setup using Varian DTS software.
        J Appl Clin Med Phys. 2012; 13: 3752
        • van Sörnsen de Koste J.R.
        • Dahele M.
        • Mostafavi H.
        • Senan S.
        • van der Weide L.
        • Slotman B.J.
        • et al.
        Digital tomosynthesis (DTS) for verification of target position in early stage lung cancer patients.
        Med Phys. 2013; 40: 91904
        • Verbakel W.F.A.R.
        • Gurney-Champion O.J.
        • Slotman B.J.
        • Dahele M.
        Sub-millimeter spine position monitoring for stereotactic body radiotherapy using offline digital tomosynthesis.
        Radiother Oncol. 2015; 115: 223-228
        • Ling C.
        • Zhang P.
        • Etmektzoglou T.
        • Star-Lack J.
        • Sun M.
        • Shapiro E.
        • et al.
        Acquisition of MV-scatter-free kilovoltage CBCT images during RapidArc™ or VMAT.
        Radiother Oncol. 2011; 100: 145-149
        • Ouyang L.
        • Lee H.P.
        • Wang J.
        A moving blocker-based strategy for simultaneous megavoltage and kilovoltage scatter correction in cone-beam computed tomography image acquired during volumetric modulated arc therapy.
        Radiother Oncol. 2015; 115: 425-430
        • Yoganathan S.A.
        • Maria Das K.J.
        • Midunvaleja K.M.
        • Raj D.G.
        • Agarwal A.
        • Velmurugan J.
        • et al.
        Evaluating the image quality of cone beam CT acquired during rotational delivery.
        Br J Radiol. 2015; 88: 20150425
        • de Smet M.
        • Schuring D.
        • Nijsten S.
        • Verhaegen F.
        Accuracy of dose calculations on kV cone beam CT images of lung cancer patients.
        Med Phys. 2016; 43: 5934-5941
        • Richter A.
        • Hu Q.
        • Steglich D.
        • Baier K.
        • Wilbert J.
        • Guckenberger M.
        • et al.
        Investigation of the usability of conebeam CT data sets for dose calculation.
        Radiat Oncol. 2008; 3: 42
        • Yang Y.
        • Schreibmann E.
        • Li T.
        • Wang C.
        • Xing L.
        Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation.
        Phys Med Biol. 2007; 52: 685-705
        • Acharya S.
        • Fischer-Valuck B.W.
        • Kashani R.
        • Parikh P.
        • Yang D.
        • Zhao T.
        • et al.
        Online magnetic resonance image guided adaptive radiation therapy: first clinical applications.
        Int J Radiat Oncol Biol Phys. 2016; 94: 394-403
        • Lagendijk J.J.W.
        • van Vulpen M.
        • Raaymakers B.W.
        The development of the MRI linac system for online MRI-guided radiotherapy: a clinical update.
        J Intern Med. 2016; 280: 203-208
        • Atun R.
        • Jaffray D.A.
        • Barton M.B.
        • Bray F.
        • Baumann M.
        • Vikram B.
        • et al.
        Expanding global access to radiotherapy.
        Lancet Oncol. 2015; 16: 1153-1186