Advertisement
First in man| Volume 123, ISSUE 3, P339-345, June 2017

Download started.

Ok

First clinical investigation of a 4D maximum likelihood reconstruction for 4D PET-based treatment verification in ion beam therapy

  • Chiara Gianoli
    Correspondence
    Corresponding author at: Faculty of Physics, Chair of Experimental Physics and Medical Physics, Room: 125, Am Coulombwall 1 85748 Garching bei München, Munich, Germany.
    Affiliations
    Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Germany

    Department of Radiation Oncology, Klinikum der Ludwig-Maximilians-Universität München, Germany

    Department of Radiation Oncology, Heidelberg University Hospital, Germany
    Search for articles by this author
  • Elisabetta De Bernardi
    Affiliations
    Medicine and Surgery Department – Tecnomed Foundation, University of Milano-Bicocca, Italy
    Search for articles by this author
  • Rosalinda Ricotti
    Affiliations
    Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
    Search for articles by this author
  • Christopher Kurz
    Affiliations
    Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Germany

    Department of Radiation Oncology, Klinikum der Ludwig-Maximilians-Universität München, Germany

    Department of Radiation Oncology, Heidelberg University Hospital, Germany
    Search for articles by this author
  • Julia Bauer
    Affiliations
    Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Germany
    Search for articles by this author
  • Marco Riboldi
    Affiliations
    Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
    Search for articles by this author
  • Guido Baroni
    Affiliations
    Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

    Bioengineering Unit, National Center for Oncologic Hadrontherapy, CNAO Foundation, Pavia, Italy
    Search for articles by this author
  • Jürgen Debus
    Affiliations
    Department of Radiation Oncology, Heidelberg University Hospital, Germany

    Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Germany
    Search for articles by this author
  • Katia Parodi
    Affiliations
    Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Germany

    Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Germany
    Search for articles by this author

      Abstract

      Background and purpose

      In clinical applications of Positron Emission Tomography (PET)-based treatment verification in ion beam therapy (PT-PET), detection and interpretation of inconsistencies between Measured PET and Expected PET are mostly limited by Measured PET noise, due to low count statistics, and by Expected PET bias, especially due to inaccurate washout modelling in off-line implementations. In this work, a recently proposed 4D Maximum Likelihood (ML) reconstruction algorithm which considers Measured PET and Expected PET as two different motion phases of a 4D dataset is assessed on clinical 4D PET-CT datasets acquired after carbon ion therapy.

      Material and methods

      The 4D ML reconstruction algorithm estimates: (1) Measured PET of enhanced image quality with respect to the conventional Measured PET, thanks to the exploitation of Expected PET; (2) the deformation field mapping the Expected PET onto the Measured PET as a measure of the occurred displacements.

      Results

      Results demonstrate the desired sensitivity to inconsistencies due to breathing motion and/or setup modification, robustness to noise in different count statistics scenarios, but a limited sensitivity to Expected PET washout inaccuracy.

      Conclusions

      The 4D ML reconstruction algorithm supports clinical 4D PT-PET in ion beam therapy. The limited sensitivity to washout inaccuracy can be detected and potentially overcome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Enghardt W.
        • Debus J.
        • Haberer T.
        • Hasch B.G.
        • Hinz R.
        • Jäkel O.
        • et al.
        The application of PET to quality assurance of heavy-ion tumor therapy.
        Strahlenther Onkol. 1999; 175: 33-36
        • Enghardt W.
        • Parodi K.
        • Crespo P.
        • Fiedler F.
        • Pawelke J.
        • Pönisch F.
        Dose quantification from in-beam positron emission tomography.
        Radiother Oncol. 2004; 73: S96-S98
        • Parodi K.
        PET monitoring of hadrontherapy.
        . 2012; 15: 37-42
        • Zhu X.
        • El Fakhri G.
        Proton therapy verification with PET imaging.
        Theranostics. 2013; 3: 731
        • Knopf A.C.
        • Lomax A.
        In vivo proton range verification: a review.
        Phys Med Biol. 2013; 58: R131
        • Parodi K.
        Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring.
        Med Phys. 2015; 42: 7153-7168
        • Paganetti H.
        • El Fakhri G.
        Monitoring proton therapy with PET.
        Br J Radiol. 2015; 88: 20150173
        • Pönisch F.
        • Parodi K.
        • Hasch B.G.
        • Enghardt W.
        The modelling of positron emitter production and PET imaging during carbon ion therapy.
        Phys Med Biol. 2004; 49: 5217
        • Parodi K.
        • Paganetti H.
        • Shih H.A.
        • Michaud S.
        • Loeffler J.S.
        • DeLaney T.F.
        • et al.
        Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy..
        Int J Radiat Oncol Biol Phys. 2007; 68: 920-934
        • Bauer J.
        • Unholtz D.
        • Sommerer F.
        • Kurz C.
        • Haberer T.
        • Herfarth K.
        • et al.
        Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment.
        Radiother Oncol. 2013; 107: 218-226
        • Kurz C.
        • Bauer J.
        • Conti M.
        • Guérin L.
        • Eriksson L.
        • Parodi K.
        Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring.
        Med Phys. 2015; 42: 3979-3991
        • Knopf A.
        • Parodi K.
        • Bortfeld T.
        • Shih H.A.
        • Paganetti H.
        Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans.
        Phys Med Biol. 2009; 54: 4477
        • Shakirin G.
        • Braess H.
        • Fiedler F.
        • Kunath D.
        • Laube K.
        • Parodi K.
        • et al.
        Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques.
        Phys Med Biol. 2011; 56: 1281
        • Helmbrecht S.
        • Enghardt W.
        • Parodi K.
        • Didinger B.
        • Debus J.
        • Kunath D.
        • et al.
        Analysis of metabolic washout of positron emitters produced during carbon ion head and neck radiotherapy.
        Med Phys. 2013; 40: 091918
        • Kurz C.
        • Bauer J.
        • Unholtz D.
        • Richter D.
        • Herfarth K.
        • Debus J.
        • et al.
        Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.
        Med Phys. 2016; 43: 975-982
        • Min C.H.
        • Zhu X.
        • Winey B.A.
        • Grogg K.
        • Testa M.
        • El Fakhri G.
        • et al.
        Clinical application of in-room positron emission tomography for in vivo treatment monitoring in proton radiation therapy.
        Int J Radiat Oncol Biol Phys. 2013; 86: 183-189
        • Grogg K.
        • Zhu X.
        • Min C.H.
        • Winey B.
        • Bortfeld T.
        • Paganetti H.
        • et al.
        Feasibility of using distal endpoints for in-room PET range verification of proton therapy.
        IEEE Trans Nucl Sci. 2013; 60: 3290-3297
        • Helmbrecht S.
        • Santiago A.
        • Enghardt W.
        • Kuess P.
        • Fiedler F.
        On the feasibility of automatic detection of range deviations from in-beam PET data.
        Phys Med Biol. 2012; 57: 1387
        • Knopf A.
        • Parodi K.
        • Paganetti H.
        • Cascio E.
        • Bonab A.
        • Bortfeld T.
        Quantitative assessment of the physical potential of proton beam range verification with PET/CT.
        Phys Med Biol. 2008; 53: 4137
        • Frey K.
        • Unholtz D.
        • Bauer J.
        • Debus J.
        • Min C.H.
        • Bortfeld T.
        • et al.
        Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy.
        Phys Med Biol. 2014; 59: 5903
        • Kuess P.
        • Birkfellner W.
        • Enghardt W.
        • Helmbrecht S.
        • Fiedler F.
        • Georg D.
        Using statistical measures for automated comparison of in-beam PET data.
        Med Phys. 2012; 39: 5874-5881
        • Kuess P.
        • Helmbrecht S.
        • Fiedler F.
        • Birkfellner W.
        • Enghardt W.
        • Hopfgartner J.
        • et al.
        Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study.
        Med Phys. 2013; 40: 121718
        • Gianoli C.
        • Bauer J.
        • Riboldi M.
        • De Bernardi E.
        • Fattori G.
        • Baselli G.
        • et al.
        Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy.
        Phys Med Biol. 2014; 59: 6979
        • Blume M.
        • Navab N.
        • Rafecas M.
        Joint image and motion reconstruction for PET using a B-spline motion model.
        Phys Med Biol. 2012; 57: 8249
        • De Bernardi E.
        • Ricotti R.
        • Riboldi M.
        • Baroni G.
        • Parodi K.
        • Gianoli C.
        4D ML reconstruction as a tool for volumetric PET-based treatment verification in ion beam radiotherapy.
        Med Phys. 2016; 43: 710-726
        • Gianoli C.
        • Kurz C.
        • Riboldi M.
        • Bauer J.
        • Fontana G.
        • Baroni G.
        • et al.
        Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy.
        Phys Med Biol. 2016; 61: 4141
      1. De Bernardi E, Gianoli C, Ricotti R, Riboldi M, Baroni G. (2014). Proposal of a 4D ML reconstruction strategy for PET-based treatment verification in ion beam radiotherapy. IEEE Nuclear Science Symposium-Medical Imaging Conference 2014.

        • De Bernardi E.
        • Parodi K.
        • Ricotti R.
        • Riboldi M.
        • Baroni G.
        • Gianoli C.
        Tuning of a 4D ML reconstruction strategy for treatment verification in ion beam radiotherapy.
        Radiother Oncol. 2016; 118: S81-S82
      2. Gianoli C, Ricotti R, De Bernardi E, Riboldi M, Bauer J, Debus J et al. Clinical Investigations of a 4D ML Reconstruction Strategy for PET-Based Treatment Verification In Ion Beam Therapy. IEEE Nuclear Science Symposium-Medical Imaging Conference 2014; 2014.

        • Stützer K.
        • Bert C.
        • Enghardt W.
        • Helmbrecht S.
        • Parodi K.
        • Priegnitz M.
        • et al.
        Experimental verification of a 4D MLEM reconstruction algorithm used for in-beam PET measurements in particle therapy.
        Phys Med Biol. 2013; 58: 5085
        • Kurz C.
        • Bauer J.
        • Unholtz D.
        • Richter D.
        • Stützer K.
        • Bert C.
        • et al.
        4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study.
        Phys Med Biol. 2015; 60: 6227
        • Tian Y.
        • Stützer K.
        • Enghardt W.
        • Priegnitz M.
        • Helmbrecht S.
        • Bert C.
        • et al.
        Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring.
        Phys Med Biol. 2016; 61: N20
        • Gianoli C.
        • Riboldi M.
        • Fontana G.
        • Kurz C.
        • Parodi K.
        • Baroni G.
        A sinogram warping strategy for pre-reconstruction 4D PET optimization.
        Med Biol Eng Comput. 2015; : 1-12
        • Habermehl D.
        • Debus J.
        • Ganten T.
        • Ganten M.K.
        • Bauer J.
        • Brecht I.C.
        • et al.
        Hypofractionated carbon ion therapy delivered with scanned ion beams for patients with hepatocellular carcinoma-feasibility and clinical response.
        Radiat Oncol. 2013; 8: 59
        • Durante M.
        Charged particles for liver cancer.
        Ann Transl Med. 2015; 3
        • Böhlen T.T.
        • Cerutti F.
        • Chin M.P.W.
        • Fassò A.
        • Ferrari A.
        • Ortega P.G.
        • et al.
        The FLUKA code: developments and challenges for high energy and medical applications.
        Nucl Data Sheets. 2014; 120: 211-214
      3. Ferrari A, Sala PR, Fasso A, Ranft J. FLUKA: A multi-particle transport code (Program version 2005) (No. INFN-TC-05-11); 2005 [www.fluka.org/fluka.php].

        • Combs S.E.
        • Jäkel O.
        • Haberer T.
        • Debus J.
        Particle therapy at the Heidelberg Ion Therapy Center (HIT)–integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany.
        Radiother Oncol. 2010; 95: 41-44
        • Gianoli C.
        • Riboldi M.
        • Kurz C.
        • De Bernardi E.
        • Bauer J.
        • Fontana G.
        • et al.
        PET-CT scanner characterization for PET raw data use in biomedical research.
        Comput Med Imaging Graph. 2014; 38: 358-368
        • Pönisch F.
        • Enghardt W.
        • Lauckner K.
        Attenuation and scatter correction for in-beam positron emission tomography monitoring of tumour irradiations with heavy ions.
        Phys Med Biol. 2003; 48: 2419
        • De Bernardi E.
        • Fiorani Gallotta F.
        • Gianoli C.
        • Zito F.
        • Gerundini P.
        • Baselli G.
        ML segmentation strategies for object interference compensation in FDG-PET lesion quantification.
        Methods Inf Med. 2010; 49: 537
        • Gianoli C.
        • De Bernardi E.
        • Kurz C.
        • Riboldi, M.
        • Baroni G.
        • Parodi K.
        Geometrical interpretation of TOF PET raw data in commercial PET-CT scanner for SNR optimization.
        Radiotherapy and Oncology. 2016; 118: S46
        • Gianoli C.
        • Riboldi M.
        • Fontana G.
        • Giri M.G.
        • Grigolato D.
        • Ferdeghini M.
        • et al.
        Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy.
        Technol Cancer Res Treatment. 2014; (tcrt-2012)
        • Parodi K.
        • Bortfeld T.
        A filtering approach based on Gaussian–powerlaw convolutions for local PET verification of proton radiotherapy.
        Phys Med Biol. 2006; 51: 1991
        • Fourkal E.
        • Fan J.
        • Veltchev I.
        Absolute dose reconstruction in proton therapy using PET imaging modality: feasibility study.
        Phys Med Biol. 2009; 54: N217
        • Remmele S.
        • Hesser J.
        • Paganetti H.
        • Bortfeld T.
        A deconvolution approach for PET-based dose reconstruction in proton radiotherapy.
        Phys Med Biol. 2011; 56: 7601
        • Attanasi F.
        • Knopf A.
        • Parodi K.
        • Paganetti H.
        • Bortfeld T.
        • Rosso V.
        • et al.
        Extension and validation of an analytical model for in vivo PET verification of proton therapy—a phantom and clinical study.
        Phys Med Biol. 2011; 56: 5079
        • Aiello M.
        • Attanasi F.
        • Belcari N.
        • Rosso V.
        • Straub K.
        • Del Guerra A.
        A dose determination procedure by PET monitoring in proton therapy: Monte Carlo validation.
        IEEE Trans Nucl Sci. 2013; 60: 3298-3304