Dose–effect analysis of radiation induced rib fractures after thoracic SBRT

Barbara Stam, Erik van der Bijl, Heike Peulen, Maddalena M.G. Rossi, José S.A. Belderbos, Jan-Jakob Sonke *

Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands

Article history:
Received 29 August 2016
Received in revised form 30 December 2016
Accepted 3 January 2017
Available online 19 January 2017

Abstract

Background and purpose: To determine a dose–effect relation for radiation induced rib fractures after stereotactic body radiation therapy (SBRT) in early stage non-small cell lung cancer (NSCLC). Automatic rib delineation has enabled the analysis of a large patient group.

Material and methods: Four-hundred and sixty-six patients with stage I/II NSCLC received SBRT with a median of 54 Gy in 3 fractions. The optimal EQD2-corrected dose parameter to predict (a)symptomatic fractures was found using Cox regression. Three normal tissue complication probability (NTCP) models based on this optimal parameter were constructed: (1) at a median follow up (FU) of 26 months, (2) for all data, with time to toxicity taken into account and (3) at a FU of 26 months, excluding low dose ribs.

Results: The median time to fracture was 22 (range 5–51) months. Maximum rib dose best predicted fractures. The TD50 (dose with 50% complication) of the second NTCP model was 375 Gy. The TD50 was significantly higher for the other models indicating an under-estimation of the dose effect at the median follow-up time and/or when excluding low dose ribs.

Conclusions: The risk of symptomatic rib fractures after SBRT was significantly correlated to dose, and was <5% at 26 months when $D_{\text{max}} < 225$ Gy.

© 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 123 (2017) 176–181

For patients with inoperable peripheral early stage non-small cell lung cancer (NSCLC), stereotactic body radiation therapy (SBRT) has become the standard of care [1,2], with good local tumor control probabilities for both primary and secondary lung tumors [3]. Toxicity rates for lung, esophagus, airway, heart and spinal cord after SBRT for NSCLC were recently reported in a review [4]. Radiation induced rib fractures are a known side effect after SBRT. Rib fractures are diagnosed clinically when a fracture is found on a follow-up (FU) CT scan. This occurs in approximately 5% of patients (range 1.6–8.3%) [5–9]. A full evaluation of all available FU CTs with extra attention to fractures yields approximately 30% of fractures (range 21–41%) [10–15]. Significant dose–effect relations were reported by several groups that used manual contouring of ribs [10–12,14]. However, as manual contouring is cumbersome and time consuming, this was done on a limited number of patients, or only included ribs that received high doses. Analysis of a large group of patients is warranted, and automatic segmentation of the ribs allows for such an analysis. Recently, we showed that atlas based automatic segmentation of ribs is fast, accurate and significantly equivalent to manual segmentation [16]. In this paper we use automatic segmentation of ribs for a large group of patients to determine a dose–effect relation using the Lyman–Kutcher–Burman (LKB) model. As time to toxicity is relatively long for rib fractures, i.e., 15–22 months [10–12,14], a more accurate model could be obtained when time to toxicity is taken into account.

The aim of this paper is to determine a dose–effect relation for symptomatic, radiologically diagnosed radiation induced rib fractures after SBRT for a tumor in the lung, taking into account time to toxicity.

Material/Methods

Patient and treatment characteristics

From June 2006 to June 2013 494 consecutive patients with inoperable, mostly peripheral, lung tumors were treated with SBRT to a median of 54 Gy in 3 fractions. Four-hundred and thirty-two patients had stage T1a-T2b N0 NSCLC, two patients had T2b and T3a disease, and 60 patients were treated for oligometastatic disease from primary lung, colon, prostate, breast, rectum, bladder or melanoma tumors.

Four-hundred and sixty-six patients were included (table 1); 28 patients were excluded, due to non-radiation induced fractures (2), or technical issues (26). The median tumor diameter was 2.24 cm...
(0.7–6.9 cm), 4% of patients had a tumor >5 cm. Eight percent of patients previously received a lobectomy, pneumonectomy or wedge resection (35). Staging of tumors was done following the 6th TNM staging system.

All patients received a mid-ventilation (before Aug 2011) or mid-position (after Aug 2011) treatment planning CT scan, derived from a 4D scan [17]. The Gross Tumor Volume (GTV) was contoured on the mid-ventilation or the mid-position scan and typically expanded anisotropically by 8 or 10 mm (depending on the breathing peak-to-peak amplitude) to generate the Planning Target Volume (PTV). For treatment planning, the Pinnacle treatment planning system (Philips Radiation Oncology Systems, Milpitas, USA) was used, where dose calculations were performed using the collapsed-cone convolution/superposition algorithm. Treatment plans consisted of 16 to 20 coplanar and noncoplanar beams for intensity modulated radiotherapy (IMRT) plans, or dual arc volumetric arc therapy (VMAT). Dose prescription allowed for inhomogeneous dose to the PTV, with a maximum dose of 165% of the prescribed dose. There were no constraints on the ribs. Three-hundred and thirty-nine patients received 54 Gy in 3 fractions (73%). Twenty-six patients received 45 Gy in 3 fractions (6%), 28 patients received multiple treatments separated by several months or years; 18 patients received two series of 54 Gy in 3 fractions (4%), 8 patients received 54 Gy in 3 fractions followed by 66 Gy in 24 fractions (2%), and two patients received two consecutive treatments of 54 Gy in 3 fractions and a series of 66 Gy in 24 fractions (0.4%). Twenty-seventy percent of patients received an adapted schedule because of normal tissue constraints, overlap with a previous radiation treatment, or prior multiple RT schedules, e.g. for metachronous primary lung tumors. Other dose schedules ranged from 24 to 60 Gy in 2 to 8 fractions (14%). In one patient treated to two tumors in both lungs the third fraction was cancelled due to a pneumonia during treatment.

All patients were treated with IMRT (before Oct 2009) or VMAT (after Oct 2009) using online cone-beam guided position verification.

FU consultation consisted of a medical history, a physical examination and a CT scan at 4 months after treatment, every 6 months (after Oct 2009) using online cone-beam guided position verification. Treatment plans consisted of 16 to 20 coplanar and noncoplanar beams for intensity modulated radiotherapy (IMRT) plans, or dual arc volumetric arc therapy (VMAT). Dose prescription allowed for inhomogeneous dose to the PTV, with a maximum dose of 165% of the prescribed dose. There were no constraints on the ribs. Three-hundred and thirty-nine patients received 54 Gy in 3 fractions (73%). Twenty-six patients received 45 Gy in 3 fractions (6%), 28 patients received multiple treatments separated by several months or years; 18 patients received two series of 54 Gy in 3 fractions (4%), 8 patients received 54 Gy in 3 fractions followed by 66 Gy in 24 fractions (2%), and two patients received two consecutive treatments of 54 Gy in 3 fractions and a series of 66 Gy in 24 fractions (0.4%). Twenty-seventy percent of patients received an adapted schedule because of normal tissue constraints, overlap with a previous radiation treatment, or prior multiple RT schedules, e.g. for metachronous primary lung tumors. Other dose schedules ranged from 24 to 60 Gy in 2 to 8 fractions (14%). In one patient treated to two tumors in both lungs the third fraction was cancelled due to a pneumonia during treatment.

All patients were treated with IMRT (before Oct 2009) or VMAT (after Oct 2009) using online cone-beam guided position verification.

FU consultation consisted of a medical history, a physical examination and a CT scan at 4 months after treatment, every 6 months for two years, and yearly up to 5 years. Pain was graded using the Common Toxicity Criteria for Adverse Events (CTCAE) v3.0 [18].

Rib fractures were diagnosed on FU CT scans by the treating radiation oncologist and/or radiologist. Systematic (retrospective) evaluation of all available FU CTs was not performed, but patients that were suspected of fracture based on the CT in combination with reported pain were evaluated in detail by screening all FU CTs of these patients for fractures. Rib fractures were diagnosed radiologically and were either asymptomatic (Grade 1), or symptomatic: reported thoracic pain with intervention needed according to CTCAE criteria Grade 2 or 3. If the incidence of rib fractures was higher in patients that received multiple treatments was assessed via a student t-test.

Rib segmentation

We used atlas based segmentation in ADMIRE (2013, Elekta AB, Stockholm, Sweden) with a Random Forest implementation for rib segmentation. The method has been described previously [16,19,20]. In short, for 15 patients, the planning CTs with delineated ribcages were used as atlases. A non-rigid registration of each atlas to the planning CT of a new patient was performed, followed by a Random Forest supervised learning classification of voxels. The classification was combined with a multi-level label fusion, which merged the multiple atlas segmentations into a single new ribcage. All ribcage segmentations were manually checked for protrusions that caused connections between ribs and if necessary edited. Individual ribs were obtained from the ribcage segmentation after a triangulation of the surface mesh and separation of all unconnected surfaces, yielding 24 ribs per patient [16].

For some patients, parts of ribs 8–12 were not in the field of view of the CT. As the dose to these parts of the ribs was negligible, its influence on the NTCP model (in a smaller cohort) was negligible [16], and for these ribs only the dose on the part of the rib within the field of view was used in the calculations.

Dose–effect modeling

Physical dose distributions from the clinical plans were corrected to biologically equivalent doses, to account for the dose per fraction as given in fractions of 2 Gy (EQD2) using the linear-quadratic (LQ) model with an α/β = 3 Gy [10,11,14]. For patients with synchronous tumors that were planned on a single CT scan and treated concurrently or sequentially (31 patients): either their 3D physical dose distributions were added and EQD2 corrected (concurrent), or their 3D EQD2 corrected dose distributions were

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Patient, tumor and treatment characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
</tr>
<tr>
<td>No. Patients</td>
<td>246</td>
</tr>
<tr>
<td>Median age (range)</td>
<td>74 (47–91)</td>
</tr>
<tr>
<td>Median GTV volume (cc) (range)</td>
<td>6.3 (0.4–129)</td>
</tr>
<tr>
<td>Median PTV volume (cc) (range)</td>
<td>38.5 (7.1–347)</td>
</tr>
<tr>
<td>Median prescribed dose_Gy (range)</td>
<td>54 (24–60)</td>
</tr>
<tr>
<td>Median prescribed fractions</td>
<td>3 (2–8)</td>
</tr>
<tr>
<td>T stage: 1</td>
<td>155</td>
</tr>
<tr>
<td>T stage: 2</td>
<td>51</td>
</tr>
<tr>
<td>T stage: 3</td>
<td>1</td>
</tr>
<tr>
<td>T stage: unknown</td>
<td>39</td>
</tr>
<tr>
<td>Tumor location: LUL</td>
<td>74</td>
</tr>
<tr>
<td>Tumor location: LLL</td>
<td>27</td>
</tr>
<tr>
<td>Tumor location: RLL</td>
<td>92</td>
</tr>
<tr>
<td>Tumor location: RML</td>
<td>9</td>
</tr>
<tr>
<td>Tumor location: RLL</td>
<td>44</td>
</tr>
<tr>
<td>Median BMI (range)</td>
<td>25.4 (15.5–62.1)</td>
</tr>
<tr>
<td>Median FU (mo) (range)</td>
<td>23.3 (0.7–88.9)</td>
</tr>
<tr>
<td>No. patients with fracture (≥G1)</td>
<td>32</td>
</tr>
<tr>
<td>No. patients with symptomatic fracture (≥G2)</td>
<td>26</td>
</tr>
<tr>
<td>Median time to fracture (mo) (range)</td>
<td>22.1 (4.5–51.2)</td>
</tr>
</tbody>
</table>

GTV = Gross tumor volume; PTV = Planning target volume; LUL = Left upper lobe; LLL = Left lower lobe; RUL = Right upper lobe; RML = Right middle lobe; RLL = Right lower lobe; BMI = Body mass index.
The latency distribution from equation 4 was fitted to the data first, and the corresponding latency parameters \(\mu \) and \(\sigma \) were subsequently used to optimize the parameters \(TD_{50} \) and \(m \) of Eqs. (3) and (5).

Whether all ribs, or only ribs that received high doses should be included in the NTCP model is a topic of debate [10,16], and is investigated in the Supplementary Material.

Results

In 466 patients with a median FU of 26.1 months, 64 patients (13.7\%) had a total of 123 rib fractures observed on the FU CT scans, ranging from 1 to 5 fractures per patient, with maximum 1 fracture per rib. The median time to fracture was 22 months (range 5–51 months). As a typical example of a rib fracture, Fig. 1 shows a dose distribution on the planning CT and a rib fracture on the FU CT, 2.5 years after treatment.

The rib fractures were symptomatic (pain \(\geq 2 \)) for 42 patients (9\%) and asymptomatic (G1) for 22 patients (4.7\%). Of the patients diagnosed with fractures, 35\% had 1 fracture. The majority of fractures (89\%) occurred in ribs 1–7. Within the 28 patients that were irradiated two or three times, 3 patients (11\%) had symptomatic fractures, and 1 patient had an asymptomatic fracture (4\%). This was not significantly different from the patients that were irradiated once (\(p \)-values 0.111 and 0.248 respectively). Within the 31 patients with synchronous tumors, 3 had a symptomatic fracture, which was also not significantly different from the patients that were irradiated for one tumor. From the 35 patients that had a previous thoracic surgery, 3 (9\%) developed (symptomatic) fractures. All fractures were located outside of the surgical area.

In 466 patients, 11184 ribs were automatically segmented. Minimal manual editing of automatically segmented ribs required on average 2 min (1–15) per patient.

Dose parameters, \(D_{\text{abs}} \), \(D_{\text{rel}} \), and EUD were all significantly associated with rib fracture (both \(\geq 1 \) and \(\geq 2 \)) for all values of \(x \) and 1/\(n \) (\(p \)-values <0.001). All results shown in the remainder of the manuscript are for \(\geq 2 \) (symptomatic) fractures. Results for fractures \(\geq 1 \) are given in the Supplementary Material.

For each dose parameter the Hazard Ratios (HR) and confidence intervals (CI) for the parameters with the lowest log likelihood values were: \(D_{\text{abs}} \), 1.014 Gy\(^{-1}\) (1.013–1.016), \(D_{\text{rel}} \), 1.014 Gy\(^{-1}\) (1.013–1.016) and \(EUD_{1/\text{abs},\text{rel}} \), 1.014 Gy\(^{-1}\) (1.013–1.016). The confidence intervals of the \(x \) and 1/\(n \) parameters were: \(x_{\text{rel}} \) 0–0.8\%, \(x_{\text{abs}} \) 0–0.03 cc and 1/\(n \) 21–\(\infty \). A plot of the increasing deviations with increasing \(x \) is shown in the Supplementary Material (Fig. S1). \(D_{\text{abs}} \), \(D_{\text{rel}} \) and EUD\(_{1/\text{abs,rel}}\) are equal and will be denoted as \(D_{\text{max}} \) in the remainder of the manuscript. The random intercept was not significant, suggesting that there was no relevant interpatient variation.

The multivariate analysis showed that \(D_{\text{max}} \), age and BMI were significantly associated with rib fractures: HR(CI): 1.014 Gy\(^{-1}\) (1.013–1.016), 1.387 (74 year) (1.135–1.695) and 1.038 m\(^2\)/kg (1.001–1.077) respectively.

The \(D_{\text{max}} \) was used for NTCP modeling. At the median FU of 26 months, 230 patients were alive or had suffered a fractured rib, resulting in 5520 included ribs with 54 fractures for the first NTCP model. The incidence of rib fractures as a function of \(D_{\text{max}} \) and the most likely fit of the LKB model at 26 months are shown in Fig. 2, and corresponding optimal LKB parameters in Table 2 (column 1). The risk to develop a rib fracture at 26 months or before that was <5\% when the \(D_{\text{max}} < 207 \) Gy (Fig. 2A), and <50\% when \(D_{\text{max}} < 452 \) Gy. The average \(D_{\text{max}} \) of the fractured ribs that were found before the median FU was not significantly different from the average \(D_{\text{max}} \) of the fractured ribs that were found after the median FU.

The difference between NTCP curves for different FU times is shown in Fig. 2B. The steepness of the dose–effect relation
increases with increasing FU times. This is associated with an increasing m parameter, and a decreasing TD50 parameter (Supplementary Material Table S1).

The second NTCP model (Table 2, column 2), where the time to toxicity is taken into account, gives a prediction of developing fractures over time (Supplementary Material, Fig. S2). Fig. 3 shows the incidence of rib fractures over time and the predicted incidence for 4 different dose levels. In the highest dose bin (average $D_{\text{max}} = 334$ Gy), the risk of fracture at the median FU of 26 months was 14%. The risk of rib fractures at 26 months was < 5% when the $D_{\text{max}} < 225$ Gy, and < 50% when $D_{\text{max}} < 375$ Gy.

Fig. 4 shows that with longer FU, the 5% chance of fracture is reached at a decreasingly lower dose. For clinical interpretation we show the chance of fracture for different physical doses and fractionation schemes in the Supplementary Materials (Fig. S3).

Table 2

Optimal dose parameters for 3 NTCP models: (1) all data at 26 months. (2) all data included, and time to toxicity taken into account.

<table>
<thead>
<tr>
<th>NTCP model 1 (5928 ribs)</th>
<th>NTCP model 2 (11184 ribs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FU 26 months</td>
<td>time to toxicity incorporated</td>
</tr>
<tr>
<td>TD50 (Gy)</td>
<td>452 (420–482)</td>
</tr>
<tr>
<td>m</td>
<td>0.329 (0.313–0.346)</td>
</tr>
<tr>
<td>μ</td>
<td>3.44 (3.20–3.68)</td>
</tr>
<tr>
<td>σ</td>
<td>0.695 (0.567–0.823)</td>
</tr>
</tbody>
</table>

Discussion

We used automatic segmentation of ribs to analyze all ribs in a large cohort of patients with a lung tumor, treated with SBRT, and determined a dose–effect relation for radiation induced rib fractures. Four-hundred and sixty-six patients were included in the dosimetric analysis, making this, to our knowledge, the largest dose–effect analysis of rib fractures to date.

Both NTCP models described in our paper, excluding or including time to toxicity, show a clear dose–effect relationship to develop a rib fracture, and predict a 5% chance of fractures at 26 months for ribs receiving at least 207 or 225 Gy respectively. However, the differences between the models should not be ignored. The study population consisting of patients with medically inoperable primary or oligo metastatic pulmonary lesions have a relatively short median overall survival in relation to the median time to toxicity. Therefore, in a standard NTCP model the interpretation of the calculated probabilities is difficult, as the model is only valid for the one time point that was chosen. Also, in a standard NTCP model the chance to develop a fractured rib increases to 100% for high doses, which possibly is not valid for that time point. The second model not only predicts the chance of fracture, but the chance of fracture over time (Fig. 3). It shows that the chance of fracture increases both over time and with higher doses. This model only approaches a 100% chance of rib fractures for high doses and long follow-up times. When modeling the chance of fractures in time, the model that includes time to...
toxicity only requires 4 parameters: TD50, m, \(\mu \), and \(\sigma \), while the standard model requires a TD50 and m at each time point, so 8 parameters to create the 4 time points in Fig. 2B. Comparing the two models quantitatively is not straightforward, as they use different data as input in the model; the second model, that includes time to toxicity, incorporates all fractures that were found (at any time point). The first model ignores all fractures that were found after the chosen time point. The second model facilitates the determination of the chance of fracture at any time point. Therefore we believe that both clinically and mathematically, the second model that includes time to toxicity is the most useful model.

The best predictor for a fracture is a high dose to a small rib volume: \(D_{50,0.03} \) (11), \(D_{2cc} \) (10) or \(D_{\text{max}} \) (this paper). The confidence interval of \(x \) in \(D_{\text{mean}} \) was 0–0.03 cc, which makes our result significantly different from the results reported by Pettersson et al. and Taremi et al. (10,11). Other dosimetric parameters, such as \(D_{\text{mean}} \) were also significantly associated with rib fracture. For vertebral fractures a similar association exists between fractures and the \(D_{\text{mean}} \) (27,28), where fractures were predominantly seen in the high-dose region (29). Associations between \(D_{\text{max}} \) and vertebral fracture were not reported. The average \(D_{\text{max}} \) for fractures found before or after the median FU was not significantly different, which indicated that the lower doses did not have a later effect than the higher doses.

In this paper, we use planned \(D_{\text{max}} \) to build an NTCP model. Geometrical uncertainties in the treatment of lung cancer patients, such as setup errors, baseline shifts and respiratory motion affect the delivered dose to the rib. As \(D_{\text{max}} \) is more sensitive to geometrical uncertainties than other dose parameters, it is somewhat surprising that the planned \(D_{\text{max}} \) is still the optimal parameter. Extensive dose accumulation studies are required to gain further insight in the impact of geometrical uncertainties on NTCP modeling accuracy.

A shortcoming of this study is that we did not perform a full retrospective evaluation of all FU CTs, as this was not feasible for this large group of patients. Also, FU CTs were not available for a subset of patients. However, at our institute patients with reported pain were screened for fractures on their CT during normal clinical routine. Therefore we feel confident that the reported number of \(\geq G2 \) fractures approximates the true incidence. The \(\geq G1 \) rib fractures in our cohort are presumably underreported, but as a G1 fracture is clinically less relevant, we focused our work on the \(\geq G2 \) fractures. However, to compare our optimal LKB parameters to literature, we also looked at the \(\geq G1 \) rib fractures, as these values were not reported for the \(\geq G2 \) rib fractures.

Comparing the optimal LKB parameters to predict \(\geq G1 \) rib fractures with previously reported values gives higher values for the TD50 than Taremi et al. (11) and Stam et al. (16). In the first paper, the 50% risk of rib fractures at the median FU of 25 months, estimated from their Fig. 4, is at \(D_{0.3cc} \) 60 Gy physical dose in 3 fractions, which equals 276 Gy EQD2-corrected dose (11). Our TD50 at the median FU of 26 months for the \(\geq G1 \) fractures was 406 Gy (following the first model, which does not take time to toxicity into account, as Taremi et al. (11) also did not). However, in their paper a systematic review of all available CTs was performed to obtain all (a)symptomatic fractures, while in our paper only fractures diagnosed during normal clinical routine were included. Therefore it is to be expected that our lower fracture rate and the lower risk of fractures is represented by a higher TD50 in our paper.

Our 9% \(\geq G2 \) fracture rate falls within the wide ranges reported in the literature for \(\geq G2 \) fractures; reported fracture rates are 24%, 10%, 2% and 0% (11,12,14,30). Our LKB parameter values are within the rather wide confidence intervals reported previously, as those paper only included 41 and 57 patients (10,16).

In our multivariate analysis, we included only one dosimetric parameter to avoid multicollinearity. The dose to the rib was significantly associated with fracture, as were age and BMI. COPD grade, which is correlated to the use of corticoid steroids, was not associated with fracture. Distance from rib to tumor was not incorporated in the multivariate analysis, as it is strongly correlated to rib dose. Gender, which proved significantly associated with rib fracture after SBRT in other studies (11,15,23), was not significant in our group of patients. The higher risk in female patients was previously attributed to the higher risk of osteoporosis in these patients (23). Due to the retrospective nature of this study, clinical factors such as osteoporosis status or diabetes mellitus were only known for a small subset of patients, and could thus not be assessed in this study, but we encourage future research to include these in a multivariate analysis.

Previously we discussed whether an NTCP model based on absolute or relative volumes would be more accurate (16), and how a larger dataset could answer this question. Within our large dataset, \(D_{\text{max}} \) was the best predictor for fractures, making the discussion on absolute or relative volumes superfluous.

We did not include a \(V_x \) parameter (volume receiving dose \(x \)) in our NTCP modeling, as there are many ribs that receive a low dose. The \(V_x \) of these ribs would be zero for a large range of \(x \) which is unfavorable for NTCP modeling, and \(D_x \) typically outperforms \(V_x \) in such situations (31).

Fig. 3. Kaplan–Meier curve for rib fractures for \(D_{\text{max}} \) in 4 different groups: actual (crosses), and predicted (lines).

Fig. 4. Isoprobability lines for the 1%, 5% and 10% chance of \(\geq G2 \) fracture as a function of FU time.
In only 9% of patients in this cohort, did rib fractures cause pain complaints (≥G2). One third of the fractures were asymptomatic (G1). Different fractionation schemes could be applied to possibly reduce the chance of rib fractures [32]. However, since in this cohort the vast majority of the patients received 54 Gy in 3 fractions, the effect of a different scheme on the incidence of rib fracture could not be tested. However, this study has caused us to reconsider our fractionation scheme for tumors close to the rib, as did Bongers et al. [8]. When applying a different fractionation scheme, the chance of fracture can easily be calculated using our model, as it only needs the EQD2-corrected D_{max}. In this cohort, patients that were irradiated twice for synchronous or metachronous tumors did not have a significantly higher chance to develop a rib fracture, indicating that the EQD2-corrected D_{max} is the dominant prognostic factor in predicting fracture. In clinical practice, informing the patient not only about the chance of developing a rib fracture, but also about the duration of the pain is relevant. In this dataset, it was not feasible to study the duration of pain, as the frequency of the FU CT scans was too low.

Conclusion

We used automatic segmentation of ribs in a large group of patients with a lung tumor, treated with SBRT, and determined a dose–effect relation for radiation induced rib fractures. The risk of symptomatic rib fracture was significantly correlated to the administered dose, and was ≤5% at 26 months when the EQD2-corrected D_{max} was lower than 225 Gy.

Conflict of interest

This work was sponsored in part by a research grant from Elekta Oncology Systems Ltd.

Acknowledgement

This work was sponsored in part by a research grant from the Dutch Cancer Society (NKI 2009–4568).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.radonc.2017.01.004.

References

