Advertisement
Phase II trial| Volume 119, ISSUE 1, P91-96, April 2016

Download started.

Ok

Dose escalation to dominant intraprostatic lesions with MRI-transrectal ultrasound fusion High-Dose-Rate prostate brachytherapy. Prospective phase II trial

Published:February 15, 2016DOI:https://doi.org/10.1016/j.radonc.2016.02.004

      Abstract

      Background and purpose

      To demonstrate the feasibility, safety and effectiveness of dose escalation to intraprostatic lesions with MRI-transrectal ultrasound fusion High-Dose-Rate (HDR) brachytherapy.

      Materials and methods

      15 patients with intermediate-high risk prostate cancer and visible dominant intra-prostatic nodule on mpMRI have been treated. The treatment consisted of combined MRI-TRUS fusion HDR-brachytherapy (1 fraction of 1500 cGy) and hypofractionated external beam (3750 cGy in 15 fractions).
      A dose of 1875 Gy was delivered to at least 98% of the DIL volume.

      Results

      Median prostate volume was 23.8 cc; median number of needles was 16 (13–18). Dose escalation to DIL was feasible in 14/15 patients (93%) without violating dosimetric constraints and 1 patient presented a minimal deviation of dosimetric restrictions.
      With a median follow-up of 18 months (17–24), none of the patients developed acute urinary retention or grade ⩾3 toxicity.
      In addition to standard PSA follow-up, response has been assessed by mpMRI at 12 months. All patients presented adequate morphological responses on anatomical and functional sequences.

      Conclusions

      HDR brachytherapy using MRI-transrectal ultrasound fusion for image guidance is a suitable technique for partial prostate dose escalation. Tolerance and toxicity profiles are excellent and results are encouraging in terms of biochemical, morphological and functional response.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Peeters S.T.H.
        • Heemsbergen W.D.
        • Koper P.C.M.
        • van Putten W.L.J.
        • Slot A.
        • Dielwart M.F.H.
        • et al.
        Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy.
        J Clin Oncol. 2006 May 1; 24: 1990-1996
        • Kuban D.A.
        • Tucker S.L.
        • Dong L.
        • Starkschall G.
        • Huang E.H.
        • Cheung M.R.
        • et al.
        Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2008 Jan 1; 70: 67-74
        • Beckendorf V.
        • Guerif S.
        • Le Prisé E.
        • Cosset J.-M.
        • Bougnoux A.
        • Chauvet B.
        • et al.
        70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial.
        Int J Radiat Oncol Biol Phys. 2011 Jul 15; 80: 1056-1063
        • Dearnaley D.P.
        • Sydes M.R.
        • Graham J.D.
        • Aird E.G.
        • Bottomley D.
        • Cowan R.A.
        • et al.
        Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial.
        Lancet Oncol. 2007; 8: 475-487
        • Zietman A.L.
        • Bae K.
        • Slater J.D.
        • Shipley W.U.
        • Efstathiou J.A.
        • Coen J.J.
        • et al.
        Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95–09.
        J Clin Oncol. 2010 Mar 1; 28: 1106-1111
        • Cellini N.
        • Morganti A.G.
        • Mattiucci G.C.
        • Valentini V.
        • Leone M.
        • Luzi S.
        • et al.
        Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning.
        Int J Radiat Oncol Biol Phys. 2002 Jul 1; 53: 595-599
        • Pucar D.
        • Hricak H.
        • Shukla-Dave A.
        • Kuroiwa K.
        • Drobnjak M.
        • Eastham J.
        • et al.
        Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence.
        Int J Radiat Oncol Biol Phys. 2007 Sep 1; 69: 62-69
        • Arrayeh E.
        • Westphalen A.C.
        • Kurhanewicz J.
        • Roach M.
        • Jung A.J.
        • Carroll P.R.
        • et al.
        Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study.
        Int J Radiat Oncol Biol Phys. 2012 Apr 1; 82: e787-e793
        • Miralbell R.
        • Roberts S.A.
        • Zubizarreta E.
        • Hendry J.H.
        Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy.
        Int J Radiat Oncol Biol Phys. 2012 Jan 1; 82: e17-e24
        • Turkbey B.
        • Albert P.S.
        • Kurdziel K.
        • Choyke P.L.
        Imaging localized prostate cancer: current approaches and new developments.
        Am J Roentgenol. 2009 Jun; 192: 1471-1480
        • Barentsz J.O.
        • Richenberg J.
        • Clements R.
        • Choyke P.
        • Verma S.
        • Villeirs G.
        • et al.
        ESUR prostate MR guidelines 2012.
        Eur Radiol. 2012 Apr; 22: 746-757
        • Georg D.
        • Hopfgartner J.
        • Gòra J.
        • Kuess P.
        • Kragl G.
        • Berger D.
        • et al.
        Dosimetric considerations to determine the optimal technique for localized prostate cancer among external photon, proton, or carbon-ion therapy and high-dose-rate or low-dose-rate brachytherapy.
        Int J Radiat Oncol Biol Phys. 2014 Mar 1; 88: 715-722
      1. Common Terminology Criteria for Adverse Events (CTCAE) – CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf [Internet]. [cited 2015 Aug 6]. Available from: <http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf>.

        • McNeal J.E.
        • Price H.M.
        • Redwine E.A.
        • Freiha F.S.
        • Stamey T.A.
        Stage A versus stage B adenocarcinoma of the prostate: morphological comparison and biological significance.
        J Urol. 1988 Jan; 139: 61-65
        • Delongchamps N.B.
        • Beuvon F.
        • Eiss D.
        • Flam T.
        • Muradyan N.
        • Zerbib M.
        • et al.
        Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer.
        Prostate Cancer Prostatic Dis. 2011 Sep; 14: 232-237
        • Okamura T.
        • Umemoto Y.
        • Yamashita K.
        • Suzuki S.
        • Shirai T.
        • Hashimoto Y.
        • et al.
        Pitfalls with MRI evaluation of prostate cancer detection: comparison of findings with histopathological assessment of retropubic radical prostatectomy specimens.
        Urol Int. 2006; 77: 301-306
        • Mouraviev V.
        • Villers A.
        • Bostwick D.G.
        • Wheeler T.M.
        • Montironi R.
        • Polascik T.J.
        Understanding the pathological features of focality, grade and tumour volume of early-stage prostate cancer as a foundation for parenchyma-sparing prostate cancer therapies: active surveillance and focal targeted therapy.
        BJU Int. 2011 Oct; 108: 1074-1085
        • Karavitakis M.
        • Ahmed H.U.
        • Abel P.D.
        • Hazell S.
        • Winkler M.H.
        Tumor focality in prostate cancer: implications for focal therapy.
        Nat Rev Clin Oncol. 2011 Jan; 8: 48-55
        • Marignol L.
        • Coffey M.
        • Lawler M.
        • Hollywood D.
        Hypoxia in prostate cancer: a powerful shield against tumour destruction?.
        Cancer Treat Rev. 2008 Jun; 34: 313-327
        • Turkbey B.
        • Mani H.
        • Shah V.
        • Rastinehad A.R.
        • Bernardo M.
        • Pohida T.
        • et al.
        Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds.
        J Urol. 2011 Nov; 186: 1818-1824
        • Villers A.
        • Puech P.
        • Mouton D.
        • Leroy X.
        • Ballereau C.
        • Lemaitre L.
        Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings.
        J Urol. 2006 Dec; 176: 2432-2437
        • Stamey T.A.
        • McNeal J.E.
        • Yemoto C.M.
        • Sigal B.M.
        • Johnstone I.M.
        Biological determinants of cancer progression in men with prostate cancer.
        JAMA. 1999 Apr 21; 281: 1395-1400
        • Hollmann B.G.
        • van Triest B.
        • Ghobadi G.
        • Groenendaal G.
        • de Jong J.
        • van der Poel H.G.
        • et al.
        Gross tumor volume and clinical target volume in prostate cancer: How do satellites relate to the index lesion.
        Radiother Oncol. 2015 Apr; 115: 96-100
        • Bauman G.
        • Haider M.
        • Van der Heide U.A.
        • Ménard C.
        Boosting imaging defined dominant prostatic tumors: a systematic review.
        Radiother Oncol. 2013 Jun; 107: 274-281
        • Ippolito E.
        • Mantini G.
        • Morganti A.G.
        • Mazzeo E.
        • Padula G.D.A.
        • Digesù C.
        • et al.
        Intensity-modulated radiotherapy with simultaneous integrated boost to dominant intraprostatic lesion: preliminary report on toxicity.
        Am J Clin Oncol. 2012 Apr; 35: 158-162
        • Wong W.W.
        • Schild S.E.
        • Vora S.A.
        • Ezzell G.A.
        • Nguyen B.D.
        • Ram P.C.
        • et al.
        Image-guided radiotherapy for prostate cancer: a prospective trial of concomitant boost using indium-111-capromab pendetide (ProstaScint) imaging.
        Int J Radiat Oncol Biol Phys. 2011 Nov 15; 81: e423-e429
        • Pinkawa M.
        • Attieh C.
        • Piroth M.D.
        • Holy R.
        • Nussen S.
        • Klotz J.
        • et al.
        Dose-escalation using intensity-modulated radiotherapy for prostate cancer–evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost.
        Radiother Oncol. 2009 Nov; 93: 213-219
        • Singh A.K.
        • Guion P.
        • Sears-Crouse N.
        • Ullman K.
        • Smith S.
        • Albert P.S.
        • et al.
        Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gray with IMRT: early results of a phase I NCI study.
        Radiat Oncol Lond Engl. 2007; 2: 36
        • Miralbell R.
        • Mollà M.
        • Rouzaud M.
        • Hidalgo A.
        • Toscas J.I.
        • Lozano J.
        • et al.
        Hypofractionated boost to the dominant tumor region with intensity modulated stereotactic radiotherapy for prostate cancer: a sequential dose escalation pilot study.
        Int J Radiat Oncol Biol Phys. 2010 Sep 1; 78: 50-57
        • Ellis R.J.
        • Kaminsky D.A.
        • Zhou E.H.
        • Fu P.
        • Chen W.-D.
        • Brelin A.
        • et al.
        Ten-year outcomes: the clinical utility of single photon emission computed tomography/computed tomography capromab pendetide (Prostascint) in a cohort diagnosed with localized prostate cancer.
        Int J Radiat Oncol Biol Phys. 2011 Sep 1; 81: 29-34
        • DiBiase S.J.
        • Hosseinzadeh K.
        • Gullapalli R.P.
        • Jacobs S.C.
        • Naslund M.J.
        • Sklar G.N.
        • et al.
        Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer.
        Int J Radiat Oncol Biol Phys. 2002 Feb 1; 52: 429-438
        • Andrzejewski P.
        • Kuess P.
        • Knäusl B.
        • Pinker K.
        • Georg P.
        • Knoth J.
        • et al.
        Feasibility of dominant intraprostatic lesion boosting using advanced photon-, proton- or brachytherapy.
        Radiother Oncol. 2015 Sep 6;
        • Schick U.
        • Popowski Y.
        • Nouet P.
        • Bieri S.
        • Rouzaud M.
        • Khan H.
        • et al.
        High-dose-rate brachytherapy boost to the dominant intra-prostatic tumor region: hemi-irradiation of prostate cancer.
        Prostate. 2011 Sep; 71: 1309-1316
        • Pouliot J.
        • Kim Y.
        • Lessard E.
        • Hsu I.-C.
        • Vigneron D.B.
        • Kurhanewicz J.
        Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging.
        Int J Radiat Oncol Biol Phys. 2004 Jul 15; 59: 1196-1207
        • Crook J.
        • Ots A.
        • Gaztañaga M.
        • Schmid M.
        • Araujo C.
        • Hilts M.
        • et al.
        Ultrasound-planned high-dose-rate prostate brachytherapy: dose painting to the dominant intraprostatic lesion.
        Brachytherapy. 2014 Oct; 13: 433-441
        • Dickinson L.
        • Ahmed H.U.
        • Allen C.
        • Barentsz J.O.
        • Carey B.
        • Futterer J.J.
        • et al.
        Scoring systems used for the interpretation and reporting of multiparametric MRI for prostate cancer detection, localization, and characterization: could standardization lead to improved utilization of imaging within the diagnostic pathway?.
        J Magn Reson Imaging JMRI. 2013 Jan; 37: 48-58
        • Murray L.J.
        • Lilley J.
        • Thompson C.M.
        • Cosgrove V.
        • Mason J.
        • Sykes J.
        • et al.
        Prostate stereotactic ablative radiation therapy using volumetric modulated arc therapy to dominant intraprostatic lesions.
        Int J Radiat Oncol. 2014 Jun; 89: 406-415
        • Gibson E.
        • Gaed M.
        • Gómez J.A.
        • Moussa M.
        • Romagnoli C.
        • Kassam Z.
        • et al.
        Toward prostate cancer contouring guidelines on mri: dominant lesion gross and clinical target volume coverage via accurate histology fusion.
        Int J Radiat Oncol. 2014 Sep; 90: S207
        • Foltz W.D.
        • Wu A.
        • Chung P.
        • Catton C.
        • Bayley A.
        • Milosevic M.
        • et al.
        Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer.
        J Magn Reson Imaging JMRI. 2013 Apr; 37: 909-916
        • Song I.
        • Kim C.K.
        • Park B.K.
        • Park W.
        Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T.
        AJR Am J Roentgenol. 2010 Jun; 194: W477-W482
        • Hu Y.
        • Ahmed H.U.
        • Taylor Z.
        • Allen C.
        • Emberton M.
        • Hawkes D.
        • et al.
        MR to ultrasound registration for image-guided prostate interventions.
        Med Image Anal. 2012 Apr; 16: 687-703