Gross tumor volume and clinical target volume in prostate cancer: How do satellites relate to the index lesion



      There is an increasing interest for dose differentiation in prostate radiotherapy. The purpose of our study was to analyze the spatial distribution of tumor satellites inside the prostate.

      Methods and materials

      61 prostatectomy specimens were stained with H&E. Tumor regions were delineated by the uro-pathologist. Volumes, distances and cell densities of all delineated tumor regions were measured and further analyzed.


      Multifocal disease was seen in 84% of the patients. The median number of tumor foci was 3. The median distance between the index lesion and the satellites was 1.0 cm, with a maximum of 4.4 cm. The index lesions accounted for 88% of the total tumor volume. The contribution of tumor foci < 0.1 cm3 to the total tumor volume was 2%. The median cell density of the index lesion and all satellites, regardless of size, were significantly higher than that of the prostate.


      Satellites do not appear in a limited margin around the index lesion (GTV). Consequently, a fixed CTV margin would not effectively cover all satellites. Thus if the aim is to treat all tumor foci, the entire prostate gland should be considered CTV.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Radiotherapy and Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Chen M.E.
        • Johnston D.A.
        • Tang K.
        • Babaian R.J.
        • Troncoso P.
        Detailed mapping of prostate carcinoma foci: biopsy strategy implications.
        Cancer. 2000; 89: 1800-1809
        • Mouraviev V.
        • Mayes J.M.
        • Sun L.
        • Madden J.F.
        • Moul J.W.
        • Polascik T.J.
        Prostate cancer laterality as a rationale of focal ablative therapy for the treatment of clinically localized prostate cancer.
        Cancer. 2007; 110: 906-910
        • Wise A.M.
        • Stamey T.A.
        • McNeal J.E.
        • Clayton J.L.
        Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens.
        Urology. 2002; 60: 264-269
        • Mouraviev V.
        • Villers A.
        • Bostwick D.G.
        • Wheeler T.M.
        • Montironi R.
        • Polascik T.J.
        Understanding the pathological features of focality, grade and tumour volume of early-stage prostate cancer as a foundation for parenchyma-sparing prostate cancer therapies: active surveillance and focal targeted therapy.
        Br J Urol Int. 2011; 108: 1074-1085
        • Delongchamps N.B.
        • Rouanne M.
        • Flam T.
        • et al.
        Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging.
        Br J Urol Int. 2011; 107: 1411-1418
        • Isebaert S.
        • Van den Bergh L.
        • Haustermans K.
        • et al.
        Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology.
        J Magn Reson Imaging. 2013; 37: 1392-1401
        • Turkbey B.
        • Mani H.
        • Shah V.
        • et al.
        Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds.
        J Urol. 2011; 186: 1818-1824
        • Turkbey B.
        • Mani H.
        • Aras O.
        • et al.
        Correlation of magnetic resonance imaging tumor volume with histopathology.
        J Urol. 2012; 188: 1157-1163
        • Umbehr M.
        • Bachmann L.M.
        • Held U.
        • et al.
        Combined magnetic resonance imaging and magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer: a systematic review and meta-analysis.
        Eur Urol. 2009; 55: 575-590
        • Le J.D.
        • Tan N.
        • Shkolyar E.
        • et al.
        Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology.
        Eur Urol. 2014; 22 (S0302-2838)
        • Sankineni S.
        • Osman M.
        • Choyke P.L.
        Functional MRI in prostate cancer detection.
        Biomed Res Int. 2014; (Article ID: 590638)
        • de Rooij M.
        • Hamoen E.H.
        • Futterer J.J.
        • Barentsz J.O.
        • Rovers M.M.
        Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis.
        Am J Roentgenol. 2014; 202: 343-351
        • Dubben H.H.
        • Thames H.D.
        • Beck-Bornholdt H.P.
        Tumor volume: a basic and specific response predictor in radiotherapy.
        Radiother Oncol. 1998; 47: 167-174
        • Chen M.E.
        • Johnston D.
        • Reyes A.O.
        • Soto C.P.
        • Babaian R.J.
        • Troncoso P.
        A streamlined three-dimensional volume estimation method accurately classifies prostate tumors by volume.
        Am J Surg Pathol. 2003; 27: 1291-1301
        • Chao K.K.
        • Goldstein N.S.
        • Yan D.
        • et al.
        Clinicopathologic analysis of extracapsular extension in prostate cancer: should the clinical target volume be expanded posterolaterally to account for microscopic extension?.
        Int J Radiat Oncol Biol Phys. 2006; 15: 999-1007
        • Nakashima J.
        • Tanimoto A.
        • Imai Y.
        • et al.
        Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer.
        Urology. 2004; 64: 101-105
        • Bott S.R.
        • Ahmed H.U.
        • Hindley R.G.
        • Abdul-Rahman A.
        • Freeman A.
        • Emberton M.
        The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer.
        Br J Urol Int. 2010; 106: 1607-1611
        • Epstein J.I.
        • Carmichael M.J.
        • Partin A.W.
        • Walsh P.C.
        Small high grade adenocarcinoma of the prostate in radical prostatectomy specimens performed for nonpalpable disease: pathogenetic and clinical implications.
        J Urol. 1994; 151: 1587-1592
        • Sengupta S.
        • Blute M.L.
        • Bagniewski S.M.
        • et al.
        After radical retropubic prostatectomy ‘insignificant’ prostate cancer has a risk of progression similar to low-risk ‘significant’ cancer.
        Br J Urol Int. 2008; 101: 170-174
        • Wolters T.
        • Roobol M.J.
        • van Leeuwen P.J.
        • et al.
        A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial.
        J Urol. 2011; 185: 121-125
        • Nevoux P.
        • Ouzzane A.
        • Ahmed H.U.
        • et al.
        Quantitative tissue analyses of prostate cancer foci in an unselected cystoprostatectomy series.
        Br J Urol Int. 2012; 110: 517-523
        • Hoedemaeker R.F.
        • Rietbergen J.B.
        • Kranse R.
        • Schroder F.H.
        • van der Kwast T.H.
        Histopathological prostate cancer characteristics at radical prostatectomy after population based screening.
        J Urol. 2000; 164: 411-415
        • Huang C.C.
        • Deng F.M.
        • Kong M.X.
        • Ren Q.
        • Melamed J.
        • Zhou M.
        Re-evaluating the concept of “dominant/index tumor nodule” in multifocal prostate cancer.
        Virchows Arch. 2014; 464: 589-594
        • Langer D.L.
        • van der Kwast T.H.
        • Evans A.J.
        • et al.
        Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features.
        Radiology. 2010; 255: 485-494
        • Zelhof B.
        • Pickles M.
        • Liney G.
        • et al.
        Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer.
        Br J Urol Int. 2009; 103: 883-888
        • Gibbs P.
        • Liney G.P.
        • Pickles M.D.
        • Zelhof B.
        • Rodrigues G.
        • Turnbull L.W.
        Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla.
        Invest Radiol. 2009; 44: 572-576
        • Cheng L.
        • Jones T.D.
        • Pan C.X.
        • Barbarin A.
        • Eble J.N.
        • Koch M.O.
        Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens.
        Mod Pathol. 2005; 18: 1022-1026
        • Djavan B.
        • Susani M.
        • Bursa B.
        • Basharkhah A.
        • Simak R.
        • Marberger M.
        Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen.
        Tech Urol. 1999; 5: 139-142
        • Karavitakis M.
        • Winkler M.
        • Abel P.
        • Livni N.
        • Beckley I.
        • Ahmed H.U.
        Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy.
        Prostate Cancer Prostatic Dis. 2011; 14: 46-52
        • Barret E.
        • Ahallal Y.
        • Sanchez-Salas R.
        • et al.
        Morbidity of focal therapy in the treatment of localized prostate cancer.
        Eur Urol. 2013; 63: 618-622
        • Cordeiro E.R.
        • Cathelineau X.
        • Thuroff S.
        • Marberger M.
        • Crouzet S.
        • de la Rosette J.J.
        High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer.
        Br J Urol Int. 2012; 110: 1228-1242