Normal tissue doses in Hodgkin lymphoma

A new method to estimate doses to the normal tissues after past extended and involved field radiotherapy for Hodgkin lymphoma

Maja V. Maraldo a,⇑, Michael Lundemann a, Ivan R. Vogelius a, Lena Specht a,b

aDepartment of Oncology, Section of Radiotherapy; and bDepartment of Hematology, Rigshospitalet, University of Copenhagen, Denmark

Article info

Article history:
Received 8 September 2014
Received in revised form 9 January 2015
Accepted 9 January 2015
Available online 22 January 2015

Keywords:
Dose estimates
Hodgkin lymphoma
Extended field
Involved field
Normal tissues

Abstract

Introduction: Reconstruction of radiotherapy (RT) performed decades ago is challenging, but is necessary to address dose–response questions from epidemiological data and may be relevant in re-irradiation scenarios. Here, a novel method to reconstruct extended and involved field RT for patients with Hodgkin lymphoma was used.

Materials and methods: For 46 model patients, 29 organs at risk (OARs) were contoured and seven treatment fields reconstructed (mantle, mediastinal, right/left neck, right/left axillary, and spleen field). Extended and involved field RT were simulated by generating RT plans by superpositions of the seven individual fields. The mean (standard deviation) of the 46 individual mean organ doses were extracted as percent of prescribed dose for each field superposition.

Results: The estimated mean doses to the OARs from 17 field combinations were presented. The inter-patient variability was found to be a larger contributor to the uncertainty than the field simulation process. The inter-patient variability depended on the OAR and primarily affected the estimates for OARs located at the edge of the RT field.

Conclusions: Dose estimates for 29 OARs were reported from extended and involved field RT. These estimates could be employed when individual reconstruction is not feasible and estimated doses from past treatments are needed.

© 2015 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 114 (2015) 206–211

The treatment of Hodgkin lymphoma (HL) has changed considerably over the last decades, from extended field radiotherapy (RT) as the sole treatment to combined modality treatment, with combination chemotherapy followed by consolidation RT [1–3]. Due to the increased efficacy of combination chemotherapy and technological advances, both the radiation dose and the size of the RT fields have been reduced [3–6].

A large group of HL survivors exists treated with now outdated treatment regimens including extensive RT fields to high doses. These survivors are at risk of not only relapsed disease, but also treatment-induced late effects such as cardiovascular disease and secondary cancers [7,8]. A detailed knowledge of the individual exposure may help to identify patients in need of more intense monitoring as well as aid in the interpretation of complaints and clinical findings during follow-up. Accordingly, a 3D reconstruction of radiation dose delivered to patients treated with past techniques remains important. In clinical practice it is, however, challenging to reconstruct individual treatment plans, especially if planned with 2D technique and delivered with anteroposterior-posteroanterior (APPA) fields up to several decades ago, as treatment records may be missing and the only available information is the patient’s recollection of the prescribed dose and field location.

Here, we use a novel method to estimate radiation doses to the organs at risk (OARs) in the thorax, and the head and neck regions from extended field RT and different combinations of involved field RT that were commonly used from the 1960s to the mid-2000s. Data on treatment-induced late effects arise from patients treated during this time period, primarily through observational studies with limited information on individual treatment exposure [7,9,10,8]. The risk of late effects can be used in combination with these dose estimates for dose–response analyses as well as to quantify the risk reduction obtained with modern treatment. Also, for individual patients it could allow for more precise estimates of the past organ exposure.

Abbreviations: LMCA, left main coronary artery; LADCA, left anterior descending coronary artery; LCCA, left circumflex coronary artery; RCA, right coronary artery; CCA, common carotid artery; ECA, external carotid artery; ICA, internal carotid artery; parotid, parotid gland; submand, submandibular gland.

* Corresponding author at: Department of Oncology, Section of Radiotherapy, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
E-mail address: dra.maraldo@gmail.com (M.V. Maraldo).

http://dx.doi.org/10.1016/j.radonc.2015.01.008
0167-8140/© 2015 Elsevier Ireland Ltd. All rights reserved.
Methods

The method is based on virtual simulation and computed tomography (CT)-based treatment planning to reconstruct multiple past RT fields on a cohort of patients with early stage HL.

Model patients

All patients with early stage, classical HL treated with RT at our institution from 2006–2010 were considered for the study. Forty-six patients had CT scans suitable for the reconstruction of a mantle field (MF), i.e., the patient was scanned from the base of skull to at least the 11th thoracic vertebra. We use these 46 consecutively treated patients as model patients, 25 were male, 21 female and the median age at diagnosis was 34 years (range: 15–76 years).

Contouring of organs at risk

Relevant OARs were contoured on the planning CT scans of the 46 model patients. In the thorax, the heart, the coronary arteries, the heart valves, the lungs, the female breasts, and the esophagus were contoured as specified in [11–13]. In the head and neck region, the thyroid gland, neck muscles, pharynx, larynx and the right and left parotid and submandibular glands, as well as the right and left common carotid arteries, external carotid arteries and internal carotid arteries were contoured as described previously [14,15]. In the abdomen, the stomach and spleen were contoured for the 21 patients for whom the CT scan included the entirety of these organs (hereafter referred to as spleen patients). The contouring was done retrospectively by a radiation oncologist (MM). All CT scans were performed with contrast and a slice thickness of 2.5 mm (22 patients) or 3.0 mm (24 patients).

Reconstruction of radiotherapy fields

Historically, the lymph node regions defined by the Ann Arbor staging classification [16] were used to define the borders of the RT fields for both extended and involved field RT. Extended field RT was delivered as a MF supradiaphragmatically plus the para-aortic lymph nodes and spleen in sub-total nodal irradiation. Total nodal irradiation additionally included the iliac and inguinal lymph node regions. For involved field RT, the European Organisation for Research and Treatment of Cancer (EORTC) H9 trial [17,18] protocol was used to define the borders of the different fields: a right and left neck field (supraclavicular and cervical lymph node region), a right and left axillary field (infraclavicular and axillary region), and a mediastinal field (mediastinum including the hilar nodes). A spleen field was also constructed. The individual fields were simulated on the planning CT scan using bony landmarks on the digitally reconstructed radiograph to mimic 2D planning.

Six supradiaphragmatic treatment plans (right/left neck, right/left axilla, mediastinum, MF), were generated for each of the 46 model patients in Eclipse (version 10, Varian Medical Systems) with APPA fields, using 6 MV photon beams, a collimator angle of 45° and a skin-source distance of 100 cm. Additionally, spleen fields were set up for the 21 spleen patients. All field doses were calculated as a two-step process. First, the plan calculation was made without heterogeneity correction. Thereafter, the heterogeneity correction was enabled and dose was recalculated with the same number of monitor units as in step I in order to mimic the historical prescription process, but using modern dose calculation to assess the actual dose deposition. All dose calculations were done with the AAA algorithm [19]. The prescribed dose to each field was set to 30 Gy in 2 Gy fractions, 5 fractions per week.

Radiotherapy plan simulations

A total of 31 possible combinations of fields existed for extended and involved field RT where one or more lymph node regions were involved. Fifteen field combinations which were used for less than 1% of the irradiated patients in the EORTC H9 trial were not considered further. Dose estimates for combinations with additional spleen irradiation were limited to the MF because spleen irradiation was abandoned with the introduction of involved field RT. The estimated doses for the MF with spleen irradiation were based on the 21 spleen patients, and estimated doses to the right and left breast were based on the 21 female patients. RT plans with the 17 field combinations were simulated from superposition of the seven individual plans as illustrated in Fig. 1. The final dose in each voxel was determined by the maximum dose in the corresponding voxels of the individual fields. All plan simulations were performed in MATLAB (The MathWorks, Natick, MA) using in-house routines in combination with the CERR toolbox [20]. Simulations were done with and without a spleen field for combinations which included a mediastinal field. The mean of the 46 individual mean doses to the 29 OARs was extracted as percent (%) of prescribed dose. Mean dose estimates from a full MF versus a MF simulated from five individual fields were compared in order to evaluate the accuracy of the field superposition. The inter-patient variability, i.e., the range in dose estimates from the 46 model patients, was calculated for each of the different OARs.

The patient characteristics of the 46 model patients, the definition of the individual RT field borders, number of irradiated patients for each field combination in the H9 trial, full table of results, the inter-patient variability with all field combinations, mean OAR DVHs for each field combination, and Matlab scripts are provided as Supplementary material.

Results

In Table 1, the estimated mean doses to the OARs in the thorax and abdomen as well as the 17 different field combinations are presented. From Table 1 it is seen how the estimated mean doses to the heart and the cardiac substructures (i.e., the coronary arteries and heart valves) are identical whenever the combination of RT fields includes a mediastinal field, irrespective of further additional fields. Also, when the plan includes a spleen field the mean dose estimates to the heart, the left anterior descending coronary artery, the lungs and the left female breast are increased by 20%, 29%, 15%, and 31%, respectively. However, the mean dose estimates to the remaining thoracic structures are less affected. With spleen irradiation, the mean dose estimates to the spleen and stomach are increased dramatically to 98% (±12%) and 76% (±18%) of prescribed dose irrespective of field combinations. For involved field RT, the mean dose to the right and left female breast is 15% and 16%, respectively, with a mediastinal field or with a mediastinal and right and/or left neck field. However, the mean breast dose is increased by 168% when an axillary field is added in the corresponding side. The mean dose estimates for the thoracic organs are limited to the leakage dose for involved field plans including only neck or axillary fields, except for the lungs which receive 13% (±2%) of prescribed dose from an axillary field.

The estimated mean doses to the head and neck OARs for the 17 field combinations are presented in Table 2. All OARs are estimated to receive a high dose with MF irradiation and the mean dose estimates are unchanged by the inclusion of a spleen field. Also, the laterality of the field becomes important with involved field RT. The estimated dose is equivalent to that of a MF if the OARs are included in the RT field whereas it is reduced to only the leakage dose for the remaining organs.
Fig. 1. Illustration of the field superposition process. A mantle field is simulated from five individual fields. The resulting plan is created by choosing the maximum dose contribution in each volume element (voxel) from each of the five abutting fields.

Table 1
Mean dose estimates for organs at risk in the thorax and abdomen with the 17 most common combinations of radiotherapy fields in% of prescribed dose.

<table>
<thead>
<tr>
<th>Most common combinations</th>
<th>Heart</th>
<th>LMCA</th>
<th>LAD</th>
<th>LCCA</th>
<th>RCA</th>
<th>Aortic valve</th>
<th>Pulmonary valve</th>
<th>Mitral valve</th>
<th>Tricuspid valve</th>
<th>Lungs</th>
<th>Right female breast</th>
<th>Left female breast</th>
<th>Esophagus</th>
<th>Spleen</th>
<th>Stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantle field</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>45.2</td>
<td>39.6</td>
<td>43.2</td>
<td>75.0</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mantle field and spleen irradiation</td>
<td>77.8</td>
<td>92.9</td>
<td>72.5</td>
<td>94.1</td>
<td>93.6</td>
<td>92.4</td>
<td>95.7</td>
<td>86.8</td>
<td>86.9</td>
<td>52.1</td>
<td>43.9</td>
<td>56.5</td>
<td>77.6</td>
<td>77.9</td>
<td>75.7</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckR</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckL</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckR, NeckL</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckR, AxillaR</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckR, AxillaL</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckL, AxillaR</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Mediastinum, NeckL, AxillaL</td>
<td>65.1</td>
<td>91.9</td>
<td>56.2</td>
<td>88.7</td>
<td>91.4</td>
<td>90.6</td>
<td>94.8</td>
<td>81.3</td>
<td>82.6</td>
<td>39.0</td>
<td>14.5</td>
<td>16.3</td>
<td>74.9</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td>NeckR</td>
<td>4.6</td>
<td>4.8</td>
<td>4.6</td>
<td>5.0</td>
<td>4.6</td>
<td>4.6</td>
<td>4.7</td>
<td>4.6</td>
<td>4.4</td>
<td>7.4</td>
<td>4.8</td>
<td>4.5</td>
<td>6.1</td>
<td>3.6</td>
<td>4.1</td>
</tr>
<tr>
<td>NeckL</td>
<td>4.6</td>
<td>4.9</td>
<td>4.8</td>
<td>5.2</td>
<td>4.5</td>
<td>4.6</td>
<td>4.9</td>
<td>4.7</td>
<td>4.4</td>
<td>7.3</td>
<td>4.5</td>
<td>4.7</td>
<td>7.6</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>NeckR, NeckL</td>
<td>4.6</td>
<td>5.0</td>
<td>4.9</td>
<td>5.3</td>
<td>4.7</td>
<td>4.8</td>
<td>5.0</td>
<td>4.7</td>
<td>4.6</td>
<td>9.5</td>
<td>4.8</td>
<td>4.8</td>
<td>8.0</td>
<td>3.7</td>
<td>4.3</td>
</tr>
<tr>
<td>NeckR, AxillaR</td>
<td>5.6</td>
<td>5.8</td>
<td>5.4</td>
<td>5.7</td>
<td>5.9</td>
<td>5.8</td>
<td>5.7</td>
<td>5.4</td>
<td>5.5</td>
<td>13.3</td>
<td>32.2</td>
<td>5.1</td>
<td>7.2</td>
<td>3.8</td>
<td>4.5</td>
</tr>
<tr>
<td>NeckL, AxillaR</td>
<td>5.8</td>
<td>6.4</td>
<td>6.4</td>
<td>7.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.6</td>
<td>5.8</td>
<td>5.3</td>
<td>12.8</td>
<td>5.1</td>
<td>34.0</td>
<td>9.0</td>
<td>4.6</td>
<td>5.1</td>
</tr>
<tr>
<td>AxillaR</td>
<td>5.8</td>
<td>6.4</td>
<td>6.4</td>
<td>7.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.6</td>
<td>5.8</td>
<td>5.3</td>
<td>12.6</td>
<td>5.1</td>
<td>34.0</td>
<td>8.1</td>
<td>4.5</td>
<td>5.1</td>
</tr>
<tr>
<td>Axillal</td>
<td>5.8</td>
<td>6.4</td>
<td>6.4</td>
<td>7.2</td>
<td>5.5</td>
<td>5.8</td>
<td>6.6</td>
<td>5.8</td>
<td>5.3</td>
<td>12.6</td>
<td>5.1</td>
<td>34.0</td>
<td>8.1</td>
<td>4.5</td>
<td>5.1</td>
</tr>
</tbody>
</table>


Results are presented as the mean of the 46 model patients (for full table of results see Supplementary material).

Most common combinations defined as the field combinations registered for 1% or more of patients in the EORTC H9 trial.
Mean dose estimates for organs at risk in the head and neck region with the 17 most common combinations of radiotherapy fields in % of prescribed dose.

Most common combinations defined as the field combinations registered for 1% or more of patients in the EORTC H9 trial.

Results are presented as the mean of the 46 model patients (for full table of results see Supplementary material).


In Fig. 2, the simulation error for the mean dose estimates from a full MF versus a MF simulated from 5 individual fields are illustrated for the lungs (large organ), the esophagus (long organ) and the thyroid gland (organ at the edge of the field). The mean dose estimates for the lungs are aligned close to the identity line, indicating a high accordance between the full MF and the simulated MF, whereas mean dose estimates for the thyroid gland are not. Also, the dispersion of mean dose estimates for the 46 model patients, illustrated by the gray bar, is very different for the lungs, MF, whereas mean dose estimates for the thyroid gland are not. A high accordance between the full MF and the simulated estimates for the lungs are aligned close to the identity line, indicating a high accordance between the full MF and the simulated MF, whereas mean dose estimates for the thyroid gland are not.

The standard deviation in mean dose estimates from a simulated MF for the 46 model patients are plotted against the mean estimated mean dose for each of the 29 OARs in Fig. 4. For the OARs plotted to the left, the inter-patient variability is low whereas the variability is higher the more to the right the individual organ is plotted. The variability especially affects the OARs located close to the edge of the field, such as the thyroid gland, the submandibular glands and the mitral and tricuspid valves (cf. Fig. 3).

Discussion

Here, we present a method which allows for an estimation of the mean dose to 29 different OARs in the head and neck, thorax, and abdomen with 17 possible combinations of extended and involved field radiotherapy for early stage HL, provided the dose and field type is known.

Strong features of our study are the number of model patients, the individual contouring, and the field superposition process. By using a large number of model patients it is possible to demonstrate the existence of a substantial inter-patient variability. The effect of the inter-patient variability should not be underestimated, especially with smaller RT fields: with large fields the OARs are included in their entirety but as the field is diminished only part of the organ is irradiated and the dose estimates will vary more between patients than had the organ been fully included within the field. Therefore, the inter-patient variability in estimated dose to a specific OAR will differ with each of the 17 possible field combinations (see Supplementary material). Our findings highlight the importance of an adequate number of model patients for retrospective dose reconstruction in order to capture the variation within the population of interest, especially in studies which wish to correlate treatment exposure to the risk of the late effects. Although individual re-planning should always be encouraged, it is impossible in follow-up studies with very large patient cohorts. Different approaches have been employed to overcome this obstacle, either by an estimate of dose from individual treatment records applied to a "representative" patient [21,22] or a water phantom [23–25], or by only reporting the prescribed dose to the different field types [7,9]. Our method allows for a "group" estimate, including young and old as well as male and female patients which provides an interval within which the delivered dose is likely to lie. Thus, our estimates could help provide 3D dose information for patients from large, historical cohorts for doseresponse analyses. Admittedly, such extrapolations would be associated with uncertainties. However, approximations are inherent to the discipline of retrospective dosimetry and cannot be avoided. Even individual re-planning has its own problems: The largest variability in this study was seen at the edge of the treatment fields, and so, a detailed knowledge of past fields and field borders is needed when doing re-planning. Also, the absence of CT scans for historical patients and the absence of daily image guidance even in modern series will limit the precision of some OAR dose estimates despite individual estimates.

We have chosen to simulate RT plans on 3D planning CT scans of contemporary patients, and fields are reconstructed regardless of actual involvement with strict adherence to the field definitions and without consideration of clinical parameters such as prior
approach in that we wish to estimate the exposure for patients in field size and/or prescribed dose. Our method has a reversed order of late effects, obtained with current regimens from a reduction in radiation exposure, and thereby the reduced risk of HL survivors, provided information on field type and prescribed dose can be recovered or estimated.

Alternative field RT plans are reconstructed for early stage Hodgkin lymphoma and the radiation doses to 29 different organs at risk. These estimates may be employed in clinical and research situations where knowledge of radiation doses to normal structures from past treatments is needed.

Conflicts of interest

The authors declare no conflicts of interests.
Funding

The work herein was supported by a Grant from Rigshospitalet Scientific Research Committee, Copenhagen, Denmark.

Acknowledgements

We thank Francesco Giusti, PhD, Catherine Fortpied, MSc, and Safaa Ramadan, MD, PhD at the EORTC headquarters in Belgium for their help with data extraction; the EORTC lymphoma group is greatly acknowledged for their permission to use data from the EORTC-GELA H9 trial.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.radonc.2015.01.008.

References