Guidelines

Gastric cancer†: ESMO–ESSO–ESTRO Clinical Practice Guidelines for
diagnosis, treatment and follow-up

Tom Waddell a, Marcel Verheij b, William Allum c, David Cunningham d, Andrés Cervantes e, Dirk Arnold f,*

a GI Clinical Trials Unit, Royal Marsden Hospital, Sutton, UK; b Department of Radiation Oncology and Division of Biological Stress Response, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; c Department of Surgery, Royal Marsden Hospital, London; d Department of Medicine, Royal Marsden Hospital, Sutton, UK; e Department of Hematology and Medical Oncology, INCLIVA, University of Valencia, Spain; f Department of Medical Oncology, Tumor Biology Clinic, Albert Ludwigs University, Freiburg, Germany

In 2012, there were ~140,000 new cases of gastric cancer diagnosed across all European countries, making it the sixth commonest cancer diagnosis. Perhaps more importantly, it remains the fourth commonest cause of cancer-related death, being responsible for ~107,000 deaths annually [1]. Despite a gradual decline in the worldwide incidence of gastric cancers, there has been a relative increase in the incidence of tumours of the oesophago–gastric junction (OGJ) and gastric cardia. The peak incidence is in the 7th decade, and the disease is approximately twice as common in men as in women. There is marked geographic variation, with the highest rates in East Asia, South America and Eastern Europe and the lowest rates in the United States and Western Europe [2].

The risk factors for gastric cancer include male gender, cigarette smoking, Helicobacter pylori infection, atrophic gastritis, partial gastrectomy, and Ménétrier’s disease. A small number of patients may have a genetic predisposition syndrome including hereditary non-polyposis colorectal cancer, familial adenomatous polyposis, hereditary diffuse gastric cancer and Peutz Jeghers syndrome. If this is suspected based upon family history then patients should be referred to a genetics specialist for assessment as per International Gastric Cancer Linkage Consortium guidelines [3] [V, B].

Diagnosis and pathology

Screening for gastric cancer is routine in Japan and Korea where the incidence is much higher than in Western countries. In symptomatic patients, the presenting features commonly include weight loss, dysphagia, dyspepsia, vomiting, early satiety, and/or iron-deficiency anaemia.

Diagnosis should be made from a gastroscopic or surgical biopsy reviewed by an experienced pathologist, and histology should be reported according to the World Health Organisation criteria [IV, C].
Ninety percent of gastric cancers are adenocarcinomas, and these are sub-divided according to histological appearances into diffuse (undifferentiated) and intestinal (well differentiated) types (Lauren classification). These Clinical Practice Guidelines do not apply to rarer gastric malignancies such as gastrointestinal stromal tumours (GIST), lymphomas and neuro-endocrine tumours.

Staging and risk assessment

Initial investigations include physical examination, blood count and differential, liver and renal function tests, endoscopy and contrast-enhanced computed tomography (CT) scan of the thorax, abdomen ± pelvis. Positron emission tomography (PET) imaging, if available, may improve staging through increased detection of involved lymph nodes/metastatic disease. However, it may be uninformative in some patients, especially those with mucinous tumours [III, B] (Table 1).

Endoscopic ultrasound (EUS) is helpful in determining the proximal and distal extent of the tumour and provides further assessment of the T and N stages, although it is less useful in antral tumours [III, B]. Laparoscopy ± peritoneal washings for malignant cells is recommended in all stage IB-III stomach cancers considered tumours [III, B] (Table 1). The TNM classification should be recorded and the corresponding stage determined according to the 7th edition of the Union for International Cancer Control (UICC) [6]/American Joint Cancer Committee (AJCC) [7] guidelines and staging manual (Tables 2 and 3). A careful tumour staging is fundamental to ensuring that patients are appropriately selected for treatment interventions.

Treatment planning

Multi-disciplinary treatment planning is mandatory. The core membership of the multi-disciplinary team should include surgeons, medical and radiation oncologists, gastroenterologists, radiologists, pathologists, dieticians and nurse specialists if available [IV, C].

Management of local/locoregional disease

Surgery

Surgical resection is the only treatment modality that is potentially curative, though the majority of patients still relapse following resection and therefore combined modality approaches are standard for >stage 1B disease. The extent of resection is determined by the pre-operative stage. Early gastric cancers (T1a) may be amenable to endoscopic resection if they are well-differentiated, <2 cm, confined to the mucosa and not ulcerated [8] [III, B]. The associated lymph node metastatic risk is virtually zero for this group. Guidelines from the National Cancer Centre in Tokyo have expanded these criteria in patients with intestinal-type histology and no evidence of lympho-vascular invasion to include: intramucosal cancers without ulceration regardless of tumour size; intra-mucosal cancers <3 cm with ulceration; or cancers with early invasion into the sub-mucosa (sm1) measuring <3 cm. In this expanded group the risk of lymph node metastases also remains

Table 1

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine blood tests</td>
<td>Check for evidence of iron-deficiency anaemia</td>
</tr>
<tr>
<td>Endoscopy + biopsy</td>
<td>Check hepatic and renal function to determine appropriate therapeutic options</td>
</tr>
<tr>
<td>CT thorax + abdomen ± pelvis</td>
<td>Obtain tissue for diagnosis, histological classification and molecular biomarkers e.g., HER-2 status</td>
</tr>
<tr>
<td>Endoscopic ultrasound (EUS)</td>
<td>Staging of tumour – particularly to detect local/distant lymphadenopathy and metastatic disease sites</td>
</tr>
<tr>
<td>Laparoscopy + washings</td>
<td>Determine proximal and distal extent of the tumour</td>
</tr>
<tr>
<td>Positron emission tomography (PET, if available)</td>
<td>To exclude occult metastatic disease involving the diaphragm/peritoneum</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Primary tumour (T)</th>
<th>Regional lymph nodes (N)</th>
<th>Distant metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 No evidence of primary tumour</td>
<td>NX Regional lymph node(s) cannot be assessed</td>
<td>MX Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>T1a Tumour invades lamina propria or muscularis mucosae</td>
<td>N0 No regional lymph node metastasis</td>
<td>M0 No distant metastasis</td>
</tr>
<tr>
<td>T1b Tumour invades submucosa</td>
<td>N1 Metastasis in 1–2 regional lymph nodes</td>
<td>M1 Distant metastasis or positive peritoneal cytology</td>
</tr>
<tr>
<td>T2 Tumour invades muscularis propria</td>
<td>N2 Metastasis in 3–6 regional lymph nodes</td>
<td></td>
</tr>
<tr>
<td>T3 Tumour penetrates suberosal connective tissue without invasion of visceral peritoneum or adjacent structures</td>
<td>N3 Metastasis in 7 or more regional lymph nodes</td>
<td></td>
</tr>
<tr>
<td>T4a Tumour invades serosa (visceral peritoneum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4b Tumour invades adjacent structures*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Adjacent structures include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine and retro-peritoneum.

1. Tumours also include those extending into the gastrocolic or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures.
2. Adjacent structures include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine and retro-peritoneum.
low, provided that an endoscopic submucosal en bloc resection is undertaken to permit precise pathological assessment [9] [III, B].

T1 tumours which do not meet the criteria for endoscopic therapy will require surgery, though the extent is less than for other gastric cancers (see below). In particular, the lymph node dissection can be limited to peri-gastric nodes and includes local N2 nodes, referred to as D1 alpha and D1 beta according to position of primary tumour. Sentinel node mapping may further modify these approaches.

Radical gastrectomy is indicated for resectable stage IB-III disease. Sub-total gastrectomy may be carried out if a macroscopic proximal margin of 5 cm can be achieved between the tumour and the OGJ. A margin of 8 cm has been advocated for diffuse type cancers. Otherwise a total gastrectomy is indicated [III, A]. Perioperative therapies should be considered in these patients (see below).

The extent of nodal dissection accompanying radical gastrectomy has been extensively debated (D1: removal of perigastric lymph nodes versus D2: removal of perigastric lymph nodes plus those along the left gastric, common hepatic and splenic arteries and coeliac axis). The current UICC/AJCC TNM classification recommendations (7th edition) include excision of a minimum of 15 lymph nodes to allow reliable staging [6,7]. Experience from both observational and randomised trials in Asian countries has demonstrated that D2 dissection leads to superior outcomes compared to D1 [II, B]. In the West, a Dutch [10] and a UK Medical Research Council (MRC) trial [11] failed to demonstrate any initial survival advantage with D2 resection. However the 15-year follow-up results from the Dutch trial [12] demonstrated fewer locoregional recurrences and gastric cancer-related deaths with D2 resection, though this was slightly offset by an increase in postoperative mortality and morbidity. A recent meta-analysis of 12 randomised, controlled trials (RCTs) confirmed no overall survival benefit for D2 lymphadenectomy, although a benefit was seen amongst patients who had resection without splenectomy and/or pancreatoduodenectomy [13]. The current consensus view in the West is that, for patients deemed medically fit, D2 dissection should be the standard procedure carried out in specialised, high-volume centres with appropriate surgical expertise and postoperative care [14] [I, B].

Laparoscopic surgery has been evaluated as an alternative to open surgery with the potential benefits of decreased operative morbidity and reduced recovery times. Meta-analyses confirm these benefits in distal gastrectomy, though some concerns remain regarding long-term outcomes and the possibility for reduced nodal harvest with a laparoscopic approach [15,16] [I, A]. In addition, operative morbidity is greater particularly in total gastrectomy and there remains a lack of consensus on the preferred approach to the technique of anastomosis following a laparoscopic total gastrectomy. Trials are currently ongoing in Japan (JCOG-0912), Korea (KLASS and KLASS-02) and China to compare open versus laparoscopic surgery in early gastric cancer, and these should provide further evidence regarding the role of laparoscopic surgery.

Perioperative chemotherapy

The UK MRC MAGIC trial was the first trial to evaluate the role of perioperative chemotherapy with six cycles of ECF [epirubicin 50 mg/m2 D1, cisplatin 60 mg/m2 D1 and 5-fluourouracil (5-FU) 200 mg/m2/day D1–21 Q21] compared with surgery alone in patients with resectable stage II and III gastric cancers [17]. The results demonstrated that chemotherapy improved the 5-year survival rate from 23% to 36%, with manageable toxic effects. A subsequent FNCLCC (Fédération Nationale des Centres de Lutte Contre le Cancer) and FFCD (Fédération Francophone de la Cancérologie Digestive) trial has reported similar results with the use of a 28-day regimen of perioperative cisplatin (100 mg/m2 D1) and 5-FU (800 mg/m2/day D1–5) [18]. Perioperative chemotherapy has therefore been widely adopted as the standard of care throughout most of the UK and Europe [I, A]. Since capecitabine avoids the need for an indwelling central venous access device, and is non-inferior to 5-FU in the advanced disease setting [19], many centres use ECX (epirubicin, cisplatin, capecitabine) perioperatively in preference to ECF [IV, C]. Other platinum/fluoropyrimidine doublets may be considered in patients with specific drug contraindications.

Adjuvant chemoradiotherapy

For patients who undergo surgery for stage IB oesophago-gastric cancer without administration of preoperative chemotherapy, the treatment options include either chemoradiotherapy or chemotherapy delivered in the adjuvant setting (see below). Evidence is currently lacking to inform the choice between these two treatment modalities in the adjuvant setting. Further data on these options are awaited from the ongoing randomised, phase III CRITICS trial in which patients receive 3 cycles of pre-operative chemoradiotherapy followed by surgery and are then randomised between adjuvant chemotherapy and chemoradiotherapy.

The North American Intergroup-0116 trial demonstrated that adjuvant therapy with five cycles of 5-FU/leucovorin (Q28) plus concomitant radiotherapy (45 Gy in 25 fractions over 5 weeks) during cycles 2 and 3 resulted in improved OS at 5 years compared with surgery alone. After 10 years of follow-up, this result remains significant with a hazard ratio for OS of 1.32 in favour of adjuvant chemoradiotherapy [20] [I, A]. This treatment approach is considered standard therapy in the United States, though it has not gained wide acceptance in Europe due to concerns about potential late toxic effects and the quality of surgery within the trial. Fifty-four percent of patients underwent less than a D1 lymphadenectomy, suggesting that post-operative chemoradiation may be compensation for sub-optimal surgery [II, B]. This is supported by retrospective data from the Dutch D1D2 trial, demonstrating that chemoradiotherapy reduces local recurrence rates following D1 resection, but provides no benefit in patients who have undergone D2 resection [21] [IV, B]. However, other randomised and non-

Table 3

AJCC/UICC stage grouping (7th edition) [6,7].

<table>
<thead>
<tr>
<th>Stage Grouping</th>
<th>T-stage</th>
<th>N-stage</th>
<th>M-stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II A</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II B</td>
<td>T2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II C</td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III A</td>
<td>T3</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III B</td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III C</td>
<td>T4a</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

randomised data suggest potential benefits from postoperative chemoradiation even after optimal D2 dissection [22–24] [I, B] and this is the subject of ongoing randomised trials. A retrospective comparison of the Dutch D1D2 trial has also confirmed significant improvements in OS and local recurrence rates with use of chemoradiotherapy after a microscopically incomplete (R1) resection [21] [IV, B].

In current postoperative chemoradiation regimens, radiotherapy may be given to a total dose of 45 Gy in 25 fractions of 1.8 Gy, 5 fractions/week by 3D-conformal or intensity-modulated radiation therapy techniques. The clinical target volume encompasses the gastric bed (with stomach remnant when present), anastomoses and draining regional lymph nodes (for delineation manual: www.critics.nl).

Adjuvant chemotherapy

A large, individual patient-level meta-analysis of adjuvant chemotherapy in gastric cancer has confirmed a 6% absolute benefit for 5-FU-based chemotherapy compared with surgery alone (HR 0.82, 95% CI 0.76–0.90; p < 0.001) in all subgroups tested [25] [I, A]. However, historically a greater benefit has been noted with this approach in Asian studies compared with those in Western populations and uptake of this approach in Europe remains limited due to a perceived lack of benefit and routine rates of perioperative chemotherapy. In Asian populations, an OS benefit following adjuvant chemotherapy was confirmed following D2 resection in the ACTS-GC trial evaluating adjuvant S-1 [26] [I, A]. The CLASSIC trial evaluated an adjuvant capecitabine–oxaliplatin doublet and has reported significantly improved overall and disease-free survival [27] See Fig. 1.

Management of advanced/metastatic disease

Palliative chemotherapy and radiotherapy

Patients with stage IV disease should be considered for palliative chemotherapy, which improves survival compared with best supportive care alone [28] [I, A]. However, co-morbidities, organ function and performance status must always be taken into consideration [II, B]. Although resection of the primary tumour is not generally recommended in the palliative setting, a small number of advanced disease patients may be deemed to be operable following a good response to systemic therapy. Response to systemic treatments should normally be assessed with interval CT imaging of chest, abdomen and pelvis. Alternative imaging techniques may be used if required to monitor known sites of disease (e.g., magnetic resonance imaging for bone lesions).

Combination regimens based upon a platinum–fluoropyrimidine doublet are generally used, and there remains controversy regarding the need for triplet regimens. However, a meta-analysis has demonstrated significant benefit from adding an anthracycline to a platinum and fluoropyrimidine doublet [28] [I, A]. The UK REAL-2 trial demonstrated non-inferiority between ECF, ECX, EOF (epirubicin, oxaliplatin, 5-FU) and EOX (epirubicin, oxaliplatin, capecitabine) [19]. The EOX regimen was associated with numerically longer median OS (11.2 versus 9.9 months, HR 0.80, 95% CI, 0.66–0.97; p = 0.02) than ECF without the need for an indwelling catheter and with reduced rates of thrombo-embolism [29]. Additionally, a meta-analysis has demonstrated that capecitabine is associated with improved OS compared to infused 5-FU within doublet and triplet regimes [30] [I, A].

Alternative first-line chemotherapy options include taxane-based regimens or irinotecan plus 5-FU [31]. The addition of 3-weekly docetaxel to 5-FU/cisplatin (DCF) is associated with increased activity, but also adds toxic effects including increased rates of febrile neutropenia [32] [I, C]. Modified DCF regimens therefore continue to be explored in an attempt to maintain activity whilst mitigating against excessive toxic effects.

In patients of adequate performance status, second-line chemotherapy is associated with proven improvements in OS and quality of life compared with best supportive care, with treatment options including irinotecan, docetaxel or paclitaxel [33–37] [I, A]. A randomised phase III trial directly comparing weekly paclitaxel with irinotecan has demonstrated similar efficacy for both the regimens,
with the median OS of 8–9 months in a Japanese population [37] [I, A]. Additionally, consideration should always be given to inclusion in any appropriate clinical trials [V, B]. Alternatively, in patients with disease progression >3 months following first-line chemotherapy, it may be appropriate to consider a re-challenge with the same drug combination [IV, C].

In patients with symptomatic locally advanced or recurrent disease, hypo-fractionated radiotherapy is an effective and well-tolerated treatment modality which may palliate bleeding, obstructive symptoms or pain [38] [III, B]. See Fig. 1.

Personalised medicine

As in other solid organ tumours, the biological abnormalities underpinning the development and progression of gastric cancer are being increasingly elucidated through ongoing international research. These tumours are now known to be highly molecularly diverse and may be driven by a number of different genetic and epigenetic abnormalities. Perhaps most notably, gastric cancers are frequently found to harbour copy number alterations in key oncogenes and tumour suppressor genes [39]. These findings have potentially important therapeutic implications as oncologists attempt to target the key pathways driving the tumour in each individual patient.

In HER-2 positive gastric cancer (10–15% of cases), the phase III ToGA trial demonstrated clinically and statistically significant improvements in response rate, progression-free survival (PFS) and OS with the addition of trastuzumab to a cisplatin-fluoropyrimidine doublet (median OS 13.8 versus 11.1 months, HR 0.74, 95% CI, 0.60–0.91; \(p = 0.0048 \) [40]. The benefits of trastuzumab were even more marked in the traditionally defined HER-2 positive subgroup with IHC 2+/FISH-positive tumours, or IHC 3+ tumours. In these patients the median OS was improved from 11.8 to 16.0 months (HR 0.65). Following the ToGA trial results, trastuzumab was licensed in Europe for use in HER-2 positive disease (IHC3+ or 2+/FISH-positive) in combination with capecitabine or 5-fluorouracil and cisplatin. This regimen now represents the standard of care for these patients [I, A].

The AVAGAST trial evaluating bevacizumab in combination with first-line chemotherapy failed to demonstrate any improvement in OS, though both PFS and response rate were significantly improved [41] [I, C]. A second anti-angiogenic agent, ramucirumab, has recently been confirmed to have single-agent activity in the second-line setting with a modest 1.4 month improvement in OS compared to best supportive care [42] [I, B]. Neither agent is currently in routine clinical use.

Anti-EGFR therapies have failed to improve outcomes with recently reported negative phase III results when cetuximab [43] or panitumumab [44] was added to first-line chemotherapy, and a negative phase III trial of single-agent gefitinib compared to best supportive care in the second-line [45] [I, D].

Other molecular targets which are currently showing promise in the advanced disease setting include:

- Overexpression or amplification of the MET receptor – MET targeted therapies are currently entering phase III trials in this population.
- Amplification of FGFR – anti-FGFR therapy is currently undergoing evaluation.

Follow-up and long-term implications

- In the setting of operable gastric cancer, the complexity of treatment frequently induces symptoms which adversely affect health-related quality of life. A regular follow-up may allow investigation and treatment of symptoms, psychological support and early detection of recurrence, though there is no evidence that it improves survival outcomes [46–48] [III, B].
- New strategies for patient follow-up are currently undergoing evaluation, including patient-led self-referral and services led by clinical nurse specialists.
- In the advanced disease setting, identification of patients for second-line chemotherapy and clinical trials requires regular follow-up to detect symptoms of disease progression prior to significant clinical deterioration [IV, B].
- If relapse/disease progression is suspected then a clinical history, physical examination and directed blood tests should be carried out. Radiological investigations should be carried out in patients who are candidates for further chemoradiotherapy [IV, B].
- The aggressive nature of gastric cancer, and historically poor outcomes even in the setting of operable disease, mean that the concept of survivorship is only now beginning to evolve. Long-term implications, late effects of therapy, and psychosocial implications of treatment are poorly studied to date.

Note

Levels of evidence and grades of recommendation have been applied using the system shown in Table 4. Statements without grading were considered justified standard clinical practice by the experts and the ESMO faculty.
Conflict of interest

Dr. Allum has received speaker’s honoraria for conferences and workshops from Lilly, Nestle and Astellas Oncology. Prof. Cunningham has reported advisory board of Amgen and Roche Pharmaceuticals; research funding from Amgen, Celgene, Novartis, Roche and Sanofi. Prof. Arnold has reported research grants from Roche and Sanofi. The other authors have reported no potential conflicts of interest.

References